Skip to main content

Advertisement

Log in

Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Lethal graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic stem-cell transplantation (Allo-HSCT). Pyruvate kinase M2 (PKM2) is essential for CD4+ T-cell differentiation. Using the well-characterized mouse models of Allo-HSCT, we explored the effects of TEPP-46-induced PKM2 tetramerization on GVHD and graft-versus-leukemia (GVL) activity. TEPP-46 administration significantly improved the survival rate of GVHD. The severity of GVHD and histopathological damage of GVHD-targeted organs were obviously alleviated by PKM2 tetramerization. Additionally, tetramerized PKM2 inhibited the activation of NF-κB pathway and decreased the inflammation level of GVHD mice. PKM2 tetramerization blocked Th1 and Th17 cell differentiation and secretion of pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-17). Meanwhile, differentiation of Treg cells and IL-10 secretion were promoted by tetramerized PKM2. These findings demonstrated that PKM2 enhanced the augment of Th1 and Th17 cells to accelerate the progression of GVHD, and allosteric activation of PKM2 targeted Th1 and Th17 cells attenuated GVHD. Furthermore, we also confirmed that TEPP-46 administration did not compromise GVL activity and resulted in slightly improvement of leukemia-free survive. Thus, targeting Th1 and Th17 cell response with PKM2 allosteric activator may be a promising therapeutic strategy for GVHD prevention while preserving the GVL activity in patients receiving Allo-HSCT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zorn E. CD4+CD25+ regulatory T cells in human hematopoietic cell transplantation. Semin Cancer Biol. 2006;16(2):150–9. https://doi.org/10.1016/j.semcancer.2005.11.008.

    Article  CAS  PubMed  Google Scholar 

  2. Zitzer NC, Garzon R, Ranganathan P. Toll-like receptor stimulation by microRNAs in acute graft-vs.-host disease. Front Immunol. 2018;9:2561. https://doi.org/10.3389/fimmu.2018.02561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morin F, Kavian N, Marut W, Chereau C, Cerles O, Grange P, et al. Inhibition of EGFR tyrosine kinase by erlotinib prevents sclerodermatous graft-versus-host disease in a mouse model. J Investig Dermatol. 2015;135(10):2385–93. https://doi.org/10.1038/jid.2015.174.

    Article  CAS  PubMed  Google Scholar 

  4. Nishimori H, Maeda Y, Teshima T, Sugiyama H, Kobayashi K, Yamasuji Y, et al. Synthetic retinoid Am 80 ameliorates chronic graft-versus-host disease by down-regulating Th1 and Th17. Blood. 2012;119(1):285–95. https://doi.org/10.1182/blood-2011-01-332478.

    Article  CAS  PubMed  Google Scholar 

  5. Malard F, Chevallier P, Guillaume T, Delaunay J, Rialland F, Harousseau JL, et al. Continuous reduced nonrelapse mortality after allogeneic hematopoietic stem cell transplantation: a single-institution’s three decade experience. Biol Blood Marrow Transplant. 2014;20(8):1217–23. https://doi.org/10.1016/j.bbmt.2014.04.021.

    Article  PubMed  Google Scholar 

  6. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61. https://doi.org/10.1016/s0140-6736(09)60237-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer. 2010;10(3):213–21. https://doi.org/10.1038/nrc2804.

    Article  CAS  PubMed  Google Scholar 

  8. Castilla-Llorente C, Martin PJ, McDonald GB, Storer BE, Appelbaum FR, Deeg HJ, et al. Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2014;49(7):966–71. https://doi.org/10.1038/bmt.2014.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, et al. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021;503:240–8. https://doi.org/10.1016/j.canlet.2020.11.018.

    Article  CAS  PubMed  Google Scholar 

  10. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab. 2020;31(2):391-405 e8. https://doi.org/10.1016/j.cmet.2019.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E, et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.127395.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15(4):300–8. https://doi.org/10.1016/j.semcancer.2005.04.009.

    Article  CAS  PubMed  Google Scholar 

  13. Zou J, Huang R, Chen Y, Huang X, Li H, Liang P, et al. Dihydropyrimidinase like 2 promotes bladder cancer progression via pyruvate kinase M2-induced aerobic glycolysis and epithelial-mesenchymal transition. Front Cell Dev Biol. 2021;9: 641432. https://doi.org/10.3389/fcell.2021.641432.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zou Y, Wang R, Zhao J, Cai Y, Zhong W. Increased M2 isoform of pyruvate kinase in fibroblasts contributes to the growth, aggressiveness, and osteoclastogenesis of odontogenic keratocysts. Am J Pathol. 2021;191(5):857–71. https://doi.org/10.1016/j.ajpath.2021.02.010.

    Article  CAS  PubMed  Google Scholar 

  15. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80. https://doi.org/10.1016/j.biocel.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  16. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.

    Article  CAS  PubMed  Google Scholar 

  17. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83. https://doi.org/10.1146/annurev-immunol-032712-095956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long J, Chang L, Shen Y, Gao WH, Wu YN, Dou HB, et al. Valproic acid ameliorates graft-versus-host disease by downregulating Th1 and Th17 cells. J Immunol. 2015;195(4):1849–57. https://doi.org/10.4049/jimmunol.1500578.

    Article  CAS  PubMed  Google Scholar 

  19. Cao Y, Rathmell JC, Macintyre AN. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9(8): e104104. https://doi.org/10.1371/journal.pone.0104104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871–82. https://doi.org/10.1016/j.immuni.2011.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim SY, Park MJ, Kwon JE, Jung KA, Jhun JY, Lee SY, et al. Cucurbitacin E ameliorates acute graft-versus-host disease by modulating Th17 cell subsets and inhibiting STAT3 activation. Immunol Lett. 2018;203:62–9. https://doi.org/10.1016/j.imlet.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  22. Zoller M. Immunotherapy of cancer for the elderly patient: does allogeneic bone marrow transplantation after nonmyeloablative conditioning provide a new option? Cancer Immunol Immunother. 2004;53(8):659–76. https://doi.org/10.1007/s00262-004-0503-2.

    Article  PubMed  Google Scholar 

  23. Zoehler B, Fracaro L, Senegaglia AC, Bicalho MDG. Infusion of mesenchymal stem cells to treat graft versus host disease: the role of HLA-G and the impact of its polymorphisms. Stem Cell Rev Rep. 2020;16(3):459–71. https://doi.org/10.1007/s12015-020-09960-1.

    Article  PubMed  Google Scholar 

  24. Yu Y, Wang D, Liu C, Kaosaard K, Semple K, Anasetti C, et al. Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORgammat in mice. Blood. 2011;118(18):5011–20. https://doi.org/10.1182/blood-2011-03-340315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog. 1992;3(1–2):91–115.

    CAS  PubMed  Google Scholar 

  26. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E. Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene. 2001;20(47):6891–8. https://doi.org/10.1038/sj.onc.1204792.

    Article  CAS  PubMed  Google Scholar 

  27. Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood. 2006;107(2):827–34. https://doi.org/10.1182/blood-2005-05-1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I, et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA. 2004;101(21):8120–5. https://doi.org/10.1073/pnas.0401563101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuba A, Raida L, Mrazek F, Schneiderova P, Kriegova E, Langova K, et al. NFKB1 gene single-nucleotide polymorphisms: implications for graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2020;99(3):609–18. https://doi.org/10.1007/s00277-020-03935-5.

    Article  CAS  PubMed  Google Scholar 

  30. Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 2018;96(6):585–600. https://doi.org/10.1007/s00109-018-1645-6.

    Article  CAS  PubMed  Google Scholar 

  31. Reddy P. Pathophysiology of acute graft-versus-host disease. Hematol Oncol. 2003;21(4):149–61. https://doi.org/10.1002/hon.716.

    Article  PubMed  Google Scholar 

  32. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99. https://doi.org/10.1084/jem.20020399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alves-Filho JC, Palsson-McDermott EM. Pyruvate kinase M2: a potential target for regulating inflammation. Front Immunol. 2016;7:145. https://doi.org/10.3389/fimmu.2016.00145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-kappaB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015;34(43):5482–93. https://doi.org/10.1038/onc.2015.6.

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Zhang J, Zhao H, Wan D, Jiang Z. Berberine combined with cyclosporine A alleviates acute graft-versus-host disease in murine models. Int Immunopharmacol. 2020;81: 106205. https://doi.org/10.1016/j.intimp.2020.106205.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao K, Ruan S, Yin L, Zhao D, Chen C, Pan B, et al. Dynamic regulation of effector IFN-gamma-producing and IL-17-producing T cell subsets in the development of acute graft-versus-host disease. Mol Med Rep. 2016;13(2):1395–403. https://doi.org/10.3892/mmr.2015.4638.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou V, Agle K, Chen X, Beres A, Komorowski R, Belle L, et al. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease. J Clin Investig. 2016;126(9):3541–55. https://doi.org/10.1172/JCI80874.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, et al. Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med. 2003;349(23):2201–10. https://doi.org/10.1056/NEJMoa022060.

    Article  CAS  PubMed  Google Scholar 

  39. Yang YG, Sykes M. The role of interleukin-12 in preserving the graft-versus-leukemia effect of allogeneic CD8 T cells independently of GVHD. Leuk Lymphoma. 1999;33(5–6):409–20. https://doi.org/10.3109/10428199909058446.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang P, Chen BJ, Chao NJ. Prevention of GVHD without losing GVL effect: windows of opportunity. Immunol Res. 2011;49(1–3):49–55. https://doi.org/10.1007/s12026-010-8193-7.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao C, Zhang Y, Zheng H. The effects of interferons on allogeneic T cell response in GVHD: the multifaced biology and epigenetic regulations. Front Immunol. 2021;12: 717540. https://doi.org/10.3389/fimmu.2021.717540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Project of Tackling of Key Scientific and Technical Problems in Henan Province (No. 222102310172).

Funding

This research was funded by the Project of Tackling of Key Scientific and Technical Problems in Henan Province (No. 222102310172).

Author information

Authors and Affiliations

Authors

Contributions

MW: conceptualization, project administration, and writing—original draft. Q-JL: data curation, formal analysis, and writing—original draft. H-YZ: investigation, data curation, and writing—review and editing. J-LZ: data curation and visualization.

Corresponding author

Correspondence to Meng Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Guide for the Care and Use of Laboratory Animals. Approval was granted by Ethical Review Committee of Life Sciences, Zhengzhou University.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, QJ., Zhao, HY. et al. Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation. Human Cell 37, 633–647 (2024). https://doi.org/10.1007/s13577-024-01033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01033-6

Keywords

Navigation