Skip to main content

Advertisement

Log in

KS-EMPD-1: a novel cell line of primary extramammary Paget’s disease

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Extramammary Paget’s disease (EMPD) is a rare skin cancer that mainly occurs in apocrine sweat gland-rich areas in elderly people. The prognosis of metastatic EMPD is unfavorable because of the lack of fully effective systemic therapies. However, the difficulty in establishing a model of EMPD has hampered basic research for exploring its pathogenesis and optimal treatments. Here, we established for the first time an EMPD cell line (named KS-EMPD-1) from a primary tumor on the left inguinal region of an 86-year-old Japanese male. The cells were successfully maintained for more than 1 year, with a doubling time of 31.2 ± 0.471 h. KS-EMPD-1 exhibited constant growth, spheroid formation, and invasiveness, and was confirmed to be identical to the original tumor by short tandem repeat analyses, whole exome sequencing, and immunohistochemistry (CK7+CK20GCDFP15+). Western blotting of the cells revealed the protein expression of HER2, NECTIN4, and TROP2, which have recently attracted attention as potential therapeutic targets for EMPD. KS-EMPD-1 was highly sensitive to docetaxel and paclitaxel on chemosensitivity test. The KS-EMPD-1 cell line is a promising resource for basic and preclinical research on EMPD to better define the tumor characteristics and treatment strategy of this rare cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kibbi N, Owen JL, Worley B, et al. Evidence-based clinical practice guidelines for extramammary Paget disease. JAMA Oncol. 2022;8(4):618–28.

    PubMed  Google Scholar 

  2. Kanitakis J. Mammary and extramammary Paget’s disease. J Eur Acad Dermatol Venereol. 2007;21(5):581–90.

    CAS  PubMed  Google Scholar 

  3. Shepherd V, Davidson EJ, Davies-Humphreys J. Extramammary Paget’s disease. BJOG. 2005;112(3):273–9.

    PubMed  Google Scholar 

  4. Ito T, Kaku-Ito Y, Furue M. The diagnosis and management of extramammary Paget’s disease. Exp Rev Anticancer Ther. 2018;18(6):543–53.

    CAS  Google Scholar 

  5. Hashimoto H, Ito T. Current management and treatment of extramammary Paget’s disease. Curr Treat Options Oncol. 2022;23(6):818–30.

    PubMed  Google Scholar 

  6. Ishizuki S, Nakamura Y. Extramammary Paget’s disease: diagnosis, pathogenesis, and treatment with focus on recent developments. Curr Oncol. 2021;28(4):2969–86.

    PubMed  PubMed Central  Google Scholar 

  7. Simonds RM, Segal RJ, Sharma A. Extramammary Paget’s disease: a review of the literature. Int J Dermatol. 2019;58(8):871–9.

    PubMed  Google Scholar 

  8. Funaro D, Krasny M, Lam C, Desy D, Sauthier P, Bouffard D. Extramammary Paget disease: epidemiology and association to cancer in a Quebec-based population. J Low Genit Tract Dis. 2013;17(2):167–74.

    PubMed  Google Scholar 

  9. Nasioudis D, Bhadra M, Ko EM. Extramammary Paget disease of the vulva: Management and prognosis. Gynecol Oncol. 2020;157(1):146–50.

    PubMed  Google Scholar 

  10. Yin S, Xu L, Wang S, et al. Prevalence of extramammary Paget’s disease in urban China: a population-based study. Orphanet J Rare Dis. 2021;16(1):134.

    PubMed  PubMed Central  Google Scholar 

  11. van der Zwan JM, Siesling S, Blokx WA, Pierie JP. Capocaccia R Invasive extramammary Paget’s disease and the risk for secondary tumours in Europe. Eur J Surg Oncol. 2012;38(3):214–21.

    PubMed  Google Scholar 

  12. Ohara K, Fujisawa Y, Yoshino K, et al. A proposal for a TNM staging system for extramammary Paget disease: retrospective analysis of 301 patients with invasive primary tumors. J Dermatol Sci. 2016;83(3):234–9.

    PubMed  Google Scholar 

  13. Hatta N, Yamada M, Hirano T, Fujimoto A, Morita R. Extramammary Paget’s disease: treatment, prognostic factors and outcome in 76 patients. Br J Dermatol. 2008;158(2):313–8.

    CAS  PubMed  Google Scholar 

  14. Ito T, Kaku Y, Nagae K, et al. Tumor thickness as a prognostic factor in extramammary Paget’s disease. J Dermatol. 2015;42(3):269–75.

    PubMed  Google Scholar 

  15. Murata T, Honda T, Egawa G, et al. Three-dimensional evaluation of subclinical extension of extramammary Paget disease: visualization of the histological border and its comparison to the clinical border. Br J Dermatol. 2017;177(1):229–37.

    CAS  PubMed  Google Scholar 

  16. Matsuo K, Nishio S, Matsuzaki S, et al. Surgical margin status and recurrence pattern in invasive vulvar Paget’s disease: a Japanese Gynecologic Oncology Group study. Gynecol Oncol. 2021;160(3):748–54.

    PubMed  Google Scholar 

  17. Kaku-Ito Y, Ito T, Tsuji G, et al. Evaluation of mapping biopsies for extramammary Paget disease: a retrospective study. J Am Acad Dermatol. 2018;78(6):1171-7.e4.

    PubMed  Google Scholar 

  18. Li X, Zhao C, Kou H, Zhu F, Yang Y, Lu Y. PDD-guided tumor excision combined with photodynamic therapy in patients with extramammary Paget’s disease. Photodiagn Photodyn Ther. 2022;38: 102841.

    CAS  Google Scholar 

  19. Lukowiak TM, Perz AM, Aizman L, et al. Mohs micrographic surgery for male genital tumors: local recurrence rates and patient-reported outcomes. J Am Acad Dermatol. 2021;84(4):1030–6.

    PubMed  Google Scholar 

  20. Hashimoto H, Kaku-Ito Y, Furue M, Ito T. Mucosal invasion, but not incomplete excision, has negative impact on long-term survival in patients with extramammary Paget’s disease. Front Oncol. 2021;11: 642919.

    PubMed  PubMed Central  Google Scholar 

  21. Hashimoto H, Kaku-Ito Y, Furue M, Ito T. The outcome of chemotherapy for metastatic extramammary Paget’s disease. J Clin Med. 2021;10(4):739.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato J, Hida T, Yamashita T, et al. Successful TS-1 monotherapy as the second-line treatment for advanced extramammary Paget’s disease: a report of two cases. J Dermatol. 2018;45(1):80–2.

    PubMed  Google Scholar 

  23. Matsushita S, Fujii K, Kajihara I, et al. Efficacy of S-1 plus docetaxel in the treatment of metastatic extramammary Paget’s disease: a multicentre retrospective study. Br J Dermatol. 2021;185(2):458–60.

    CAS  PubMed  Google Scholar 

  24. Fukuda K, Funakoshi T. Metastatic extramammary Paget’s disease: pathogenesis and novel therapeutic approach. Front Oncol. 2018;8:38.

    PubMed  PubMed Central  Google Scholar 

  25. Richter CE, Hui P, Buza N, et al. HER-2/NEU overexpression in vulvar Paget disease: the Yale experience. J Clin Pathol. 2010;63(6):544–7.

    CAS  PubMed  Google Scholar 

  26. Tanaka R, Sasajima Y, Tsuda H, et al. Human epidermal growth factor receptor 2 protein overexpression and gene amplification in extramammary Paget disease. Br J Dermatol. 2013;168(6):1259–66.

    CAS  PubMed  Google Scholar 

  27. Tanaka R, Sasajima Y, Tsuda H, et al. Concordance of the HER2 protein and gene status between primary and corresponding lymph node metastatic sites of extramammary Paget disease. Clin Exp Metastasis. 2016;33(7):687–97.

    CAS  PubMed  Google Scholar 

  28. Bartoletti M, Mazzeo R, De Scordilli M, et al. Human epidermal growth factor receptor-2 (HER2) is a potential therapeutic target in extramammary Paget’s disease of the vulva. Int J Gynecol Cancer. 2020;30(11):1672–7.

    PubMed  Google Scholar 

  29. Kusaba Y, Kajihara I, Myangat TM, et al. Clinical significance of ERBB2 S310F mutation in extramammary Paget’s disease. J Dermatol. 2022;49(9):e305–6.

    CAS  PubMed  Google Scholar 

  30. Kimura T, Akamatsu Y, Kajihara I, Fukushima S, Ihn H. Case of metastatic extramammary Paget’s disease treated with trastuzumab-biosimilar monotherapy after S-1 and docetaxel combination chemotherapy. J Dermatol. 2020;47(1):e1-2.

    PubMed  Google Scholar 

  31. Sekiguchi N, Kubota S, Noguchi T, et al. Experiences of trastuzumab plus paclitaxel combination therapy in metastatic human epidermal growth factor receptor 2-positive extramammary Paget’s disease: four cases and a review. J Dermatol. 2020;47(11):1276–9.

    CAS  PubMed  Google Scholar 

  32. Zattarin E, Nichetti F, Ligorio F, et al. Case report: Prolonged clinical benefit with sequential trastuzumab-containing treatments in a patient with advanced extramammary Paget disease of the groin. Front Oncol. 2022;12: 925551.

    PubMed  PubMed Central  Google Scholar 

  33. Liegl B, Horn LC, Moinfar F. Androgen receptors are frequently expressed in mammary and extramammary Paget’s disease. Mod Pathol. 2005;18(10):1283–8.

    CAS  PubMed  Google Scholar 

  34. Diaz de Leon E, Carcangiu ML, Prieto VG, et al. Extramammary Paget disease is characterized by the consistent lack of estrogen and progesterone receptors but frequently expresses androgen receptor. Am J Clin Pathol. 2000;113(4):572–5.

    CAS  PubMed  Google Scholar 

  35. Azmahani A, Nakamura Y, Ozawa Y, et al. Androgen receptor, androgen-producing enzymes and their transcription factors in extramammary Paget disease. Hum Pathol. 2015;46(11):1662–9.

    CAS  PubMed  Google Scholar 

  36. Yamada-Kanazawa S, Mijiddorj MT, Kajihara I, et al. Upregulated androgen receptor variant-7 mRNA and protein in extramammary Paget’s disease. J Eur Acad Dermatol Venereol. 2022;36(9):e724–6.

    CAS  PubMed  Google Scholar 

  37. Goto H, Sugita K, Yamamoto O. Expression of programmed death-ligand 1 and programmed death-1 in patients with extramammary Paget’s disease. Indian J Dermatol. 2021;66(2):169–73.

    PubMed  PubMed Central  Google Scholar 

  38. Kato J, Sugita S, Horimoto K, et al. Expression of programmed cell death ligand 1 (PD-L1) at in situ and invasive extramammary Paget’s disease and literature review. Australas J Dermatol. 2021;62(3):412–4.

    PubMed  Google Scholar 

  39. Mauzo SH, Tetzlaff MT, Milton DR, et al. Expression of PD-1 and PD-L1 in extramammary Paget disease: implications for immune-targeted therapy. Cancers (Basel). 2019;11(6):754.

    CAS  PubMed  Google Scholar 

  40. Hashimoto H, Kaku-Ito Y, Oda Y, Ito T. CDK4: a novel therapeutic target for extramammary Paget’s disease. Front Oncol. 2021;11: 710378.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang K, Li GX, Kong YY, et al. Chemokine receptors CXCR4 and CXCR7 are associated with tumor aggressiveness and prognosis in extramammary Paget disease. J Cancer. 2017;8(13):2471–7.

    PubMed  PubMed Central  Google Scholar 

  42. Kusaba Y, Kajihara I, Myangat TM, et al. Intertumor and intratumor heterogeneity of PIK3CA mutations in extramammary Paget’s disease. J Dermatol. 2022;49(5):508–14.

    CAS  PubMed  Google Scholar 

  43. Kitamura S, Yanagi T, Maeda T, Shimizu H. Drp1 expression levels correlate with clinical stage in extramammary Paget’s disease. J Eur Acad Dermatol Venereol. 2020;34(9):e510–3.

    CAS  PubMed  Google Scholar 

  44. Murata M, Ito T, Tanaka Y, Kaku-Ito Y, Furue M. NECTIN4 expression in extramammary Paget’s disease: implication of a new therapeutic target. Int J Mol Sci. 2020;21(16):5891.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hashimoto H, Tanaka Y, Murata M, Ito T. Nectin-4: a novel therapeutic target for skin cancers. Curr Treat Options Oncol. 2022;23(4):578–93.

    PubMed  Google Scholar 

  46. Ito T, Tanegashima K, Tanaka Y, et al. Trop2 expression in extramammary Paget’s disease and normal skin. Int J Mol Sci. 2021;22(14):7706.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeichi T, Okuno Y, Matsumoto T, et al. Frequent FOXA1-activating mutations in extramammary Paget’s disease. Cancers (Basel). 2020;12(4):820.

    CAS  PubMed  Google Scholar 

  48. Kiniwa Y, Yasuda J, Saito S, et al. Identification of genetic alterations in extramammary Paget disease using whole exome analysis. J Dermatol Sci. 2019;94(1):229–35.

    CAS  PubMed  Google Scholar 

  49. Lin JR, Liang J, Zhang QA, et al. Microarray-based identification of differentially expressed genes in extramammary Paget’s disease. Int J Clin Exp Med. 2015;8(5):7251–60.

    PubMed  PubMed Central  Google Scholar 

  50. Ishida Y, Kakiuchi N, Yoshida K, et al. Unbiased detection of driver mutations in extramammary Paget disease. Clin Cancer Res. 2021;27(6):1756–65.

    CAS  PubMed  Google Scholar 

  51. Stasenko M, Jayakumaran G, Cowan R, et al. Genomic alterations as potential therapeutic targets in extramammary Paget’s disease of the vulva. JCO Precis Oncol. 2020;4:PO.20.00073.

    PubMed  PubMed Central  Google Scholar 

  52. Kang Z, Xu F, Zhang QA, et al. Oncogenic mutations in extramammary Paget’s disease and their clinical relevance. Int J Cancer. 2013;132(4):824–31.

    CAS  PubMed  Google Scholar 

  53. Rao Y, Zhu J, Zheng H, Ren Y, Ji T. Cell origin and genome profile difference of penoscrotum invasive extramammary Paget disease compared with its in situ counterpart. Front Oncol. 2022;12: 972047.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishi M, Tashiro M, Yoshida H. Stimulation of growth by both androgen and estrogen of the EMP-K1 transplantable tumor with androgen and estrogen receptors from human extramammary Paget’s disease in nude mice. J Natl Cancer Inst. 1992;84(7):519–23.

    CAS  PubMed  Google Scholar 

  55. Maeda T, Kitamura S, Nishihara H, Yanagi T. Extramammary Paget’s disease patient-derived xenografts harboring ERBB2 S310F mutation show sensitivity to HER2-targeted therapies. Oncogene. 2020;39(36):5867–75.

    CAS  PubMed  Google Scholar 

  56. Arita T, Kondo J, Kaneko Y, et al. Novel ex vivo disease model for extramammary Paget’s disease using the cancer tissue-originated spheroid method. J Dermatol Sci. 2020;99(3):185–92.

    CAS  PubMed  Google Scholar 

  57. Ito T, Hashimoto H, Tanaka Y, et al. NECTIN4 expression in sebaceous and sweat gland carcinoma. Eur J Dermatol. 2022;32(2):181–6.

    PubMed  Google Scholar 

  58. Tanaka Y, Murata M, Tanegashima K, Oda Y, Ito T. Nectin cell adhesion molecule 4 regulates angiogenesis through Src signaling and serves as a novel therapeutic target in angiosarcoma. Sci Rep. 2022;12(1):4031.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ito T, Hashimoto H, Tanaka Y, et al. TROP2 expression in sebaceous and sweat gland carcinoma. J Clin Med. 2022;11(3):607.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka Y, Murata M, Oda Y, Furue M, Ito T. Nectin cell adhesion molecule 4 (NECTIN4) expression in cutaneous squamous cell carcinoma: a new therapeutic target? Biomedicines. 2021;9(4):355.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanaka Y, Murata M, Shen CH, Furue M, Ito T. NECTIN4: a novel therapeutic target for melanoma. Int J Mol Sci. 2021;22(2):976.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Murata M, Ito T, Tanaka Y, Yamamura K, Furue K, Furue M. OVOL2-mediated ZEB1 downregulation may prevent promotion of actinic keratosis to cutaneous squamous cell carcinoma. J Clin Med. 2020;9(3):618.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ito T, Kohashi K, Yamada Y, et al. Prognostic significance of forkhead box M1 (FoxM1) expression and antitumour effect of FoxM1 inhibition in melanoma. Histopathology. 2016;69(1):63–71.

    PubMed  Google Scholar 

  64. Ito T, Kohashi K, Yamada Y, et al. Prognostic significance of forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in angiosarcoma. J Cancer. 2016;7(7):823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanaka Y, Ito T, Kaku-Ito Y, et al. Human epidermal growth factor receptor 3 serves as a novel therapeutic target for acral melanoma. Cell Death Discov. 2023;9(1):54.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanaka Y, Uchi H, Furue M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci. 2019;96(3):151–8.

    CAS  PubMed  Google Scholar 

  67. Tanaka Y, Ito T, Tsuji G, Furue M. Baicalein inhibits benzo[a]pyrene-induced toxic response by downregulating Src phosphorylation and by upregulating NRF2-HMOX1 system. Antioxidants (Basel). 2020;9(6):507.

    CAS  PubMed  Google Scholar 

  68. Tanaka Y, Uchi H, Ito T, Furue M. Indirubin-pregnane X receptor-JNK axis accelerates skin wound healing. Sci Rep. 2019;9(1):18174.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Capes-Davis A, Theodosopoulos G, Atkin I, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127(1):1–8.

    CAS  PubMed  Google Scholar 

  70. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. https://bio-bwa.sourceforge.net. Accessed 7 June 2023.

  72. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    PubMed  PubMed Central  Google Scholar 

  73. https://varscan.sourceforge.met. Accessed 7 June 2023.

  74. https://asia.ensembl.org/info/docs/tools/vep/index.html. Accessed 7 June 2023.

  75. Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021;21:152.

    PubMed  PubMed Central  Google Scholar 

  76. Hanahan D, Weomberg R. Hall marks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  77. Liston DR, Davis M. Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Res. 2017;23(14):3489–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsuchiya R, Yoshimatsu Y, Noguchi R, et al. Establishment and characterization of NCC-DDLPS4-C1: a novel patient-derived cell line of dedifferentiated liposarcoma. J Pers Med. 2021;11(11):1075.

    PubMed  PubMed Central  Google Scholar 

  79. Saito S, Morita K, Kohara A, et al. Use of BAC array CGH for evaluation of chromosomal stability of clinically used human mesenchymal stem cells and of cancer cell lines. Hum Cell. 2011;24(1):2–8.

    PubMed  Google Scholar 

  80. Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: Perils and opportunities. Nat Rev Cancer. 2019;19(2):97–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tseng YY, Boehm JS. From cell lines to living biosensors: New opportunities to prioritize cancer dependencies using ex vivo tumor cultures. Curr Opin Genet Dev. 2019;54:33–40.

    CAS  PubMed  Google Scholar 

  82. U.S. Food and Drug Administration, FoundationOne® CDx. 2023. https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S029B.pdf. Accessed 7 June 2023.

  83. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signaling pathway and cancer. Gene. 2019;698:120–8.

    CAS  PubMed  Google Scholar 

  84. Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signaling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.

    CAS  PubMed  Google Scholar 

  85. Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. 2023;23:146.

    Google Scholar 

  86. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288:7162–82.

    CAS  PubMed  Google Scholar 

  87. Djuric T, Zivkovic M. Overview of MMP biology and gene associations in human diseases. In: Travascio F, editor. The role of matrix metalloproteinase in human body pathologies. London: Academic; 2017. p. 3–33.

    Google Scholar 

  88. Fusumae T, Fukuda K, Hirai I, et al. Outcomes in patients with extramammary Paget disease with brain metastasis: a retrospective analysis. J Am Acad Dermatol. 2020;83(6):1832–4.

    PubMed  Google Scholar 

  89. Hirai I, Tanese K, Nakamura Y, Ishii M, Kawakami Y, Funakoshi T. Combination cisplatin–epirubicin–paclitaxel therapy for metastatic extramammary Paget’s disease. Oncologist. 2019;24(6):e394–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakamura Y, Tanese K, Hirai I, et al. Weekly docetaxel monotherapy for metastatic extramammary Paget’s disease: retrospective single-institute analysis. J Dermatol. 2020;47(4):418–22.

    CAS  PubMed  Google Scholar 

  91. Yin X, Li X, Li M, et al. Treatment of metastatic primary extramammary Paget disease with combination anlotinib and tislelizumab: a case report and review of the literature. Front Med (Lausanne). 2022;9: 891958.

    PubMed  Google Scholar 

  92. Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14(1):20.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Takashi Inozume (Chiba University Graduate School of Medicine, Chiba, Japan) for his technical advice on primary cell culture. We also thank our patient as well as all members of our laboratory for their helpful advice.

Funding

This work was supported by JSPS KAKENHI, Grant number JP 22K15543 (T.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamichi Ito.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee of Kyushu University Hospital (Approval no. 21050-00, approved on November 10th, 2021).

Informed consent

Written informed consent was obtained from the patient before inclusion in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 234 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Tanaka, Y., Ichiki, T. et al. KS-EMPD-1: a novel cell line of primary extramammary Paget’s disease. Human Cell 36, 1813–1829 (2023). https://doi.org/10.1007/s13577-023-00951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00951-1

Keywords

Navigation