Skip to main content

Advertisement

Log in

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in tumor cells

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In the tumor microenvironment, the function of T cells is a fate-changer for tumor progression. In the meantime, CD28 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are vital role players in the controlling activity of T cells as an activator and deactivator, respectively. In T cells in comparison to CD28, the molecular mechanism of CTLA-4 is unclear. In addition, despite the fact that most tumor cell types express CTLA-4, its role in tumor cells is not well understood and only few studies focused on the role of CTLA-4 signaling in tumor cells. It is illustrated that CTLA-4 signaling causes PD-L1 expression in tumor cells. However, numerous characteristics of CTLA-4 signaling in tumor cells are ambiguous and require to be described. In this article, we proposed that the CTLA-4 signaling during immunotherapy with anti-CTLA-4 antibodies may cause poor responses by patients. In addition, we attract attention to several fundamental questions regarding CTLA-4 signaling in tumor cells. Overall, the CTLA-4 signaling function and the related gaps about its role in tumor cells in the present review are challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

APC:

Antigen-presenting cells

TCR:

T-cell receptor

DC:

Dendritic cell

NK cell:

Natural killer cell

sCTLA-4:

Soluble CTLA-4

RAS:

Rat sarcoma virus

PI3K:

Phosphatidylinositol 3-kinase

PKC-Ɵ:

Protein kinase C Ɵ

PLCɣ:

Phospholipase Cɣ

SHP2:

Src homology 2-containing tyrosine phosphatase 2

PP2A:

Serine–threonine phosphatase protein phosphatase 2A

ZAP70:

Zeta-chain-associated protein kinase 70

AKT:

A serine/threonine protein kinase

GLU1:

Glucose transporter 1

SNAT:

Sodium‐coupled neutral amino acid transporter 1

NIH:

National Institutes of Health

PD-L1:

Programmed death ligand-1

EGFR:

Epidermal growth factor receptor

MEK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

NA:

Not available

References

  1. Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol. 2022;23:1365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y, Lee CK, Lin C-H, Gassen RB, Xu X, Huang Z, et al. PD-L1:CD80 Cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity. 2019;51:1059-73.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769–77.

    Article  CAS  PubMed  Google Scholar 

  4. Schildberg Frank A, Klein Sarah R, Freeman Gordon J, Sharpe AH. Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 2016;44:955–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walker LS, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 2015;36:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tai X, Van Laethem F, Sharpe AH, Singer A. Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A. 2007;104:13756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yofe I, Landsberger T, Yalin A, Solomon I, Costoya C, Demane DF, et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nature Cancer. 2022;3:1336–50.

    Article  CAS  PubMed  Google Scholar 

  9. Oyewole-Said D, Konduri V, Vazquez-Perez J, Weldon SA, Levitt JM, Decker WK. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front Immunol. 2020;11:608024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γ production in response to mature dendritic cells. J Immunol. 2014;192:4184–91.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Dutta P, Liu J, Sabri N, Song Y, Li WX, et al. Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J Cell Mol Med. 2019;23:535–42.

    Article  CAS  PubMed  Google Scholar 

  12. Ghorbaninezhad F, Masoumi J, Bakhshivand M, Baghbanzadeh A, Mokhtarzadeh A, Kazemi T, et al. CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T cell responses in vitro. Front Immunol. 2022;13:931316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang XB, Giscombe R, Yan Z, Heiden T, Xu D, Lefvert AK. Expression of CTLA-4 by human monocytes. Scand J Immunol. 2002;55:53–60.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz J-CD, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410:604–8.

    Article  CAS  PubMed  Google Scholar 

  15. Nisticò L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry Hum Mol Genet. 1996;5:1075–80.

    Article  PubMed  Google Scholar 

  16. Liu J, Tian X, Wang Y, Kang X, Song W. Soluble cytotoxic T-lymphocyte–associated antigen 4 (sCTLA-4) as a potential biomarker for diagnosis and evaluation of the prognosis in Glioma. BMC Immunol. 2021;22:33.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Simone R, Pesce G, Antola P, Rumbullaku M, Bagnasco M, Bizzaro N, et al. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed Res Int. 2014;2014:215763.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Narooie-Nejad M, Taji O, Kordi Tamandani DM, Kaykhaei MA. Association of CTLA-4 gene polymorphisms -318C/T and +49A/G and Hashimoto’s thyroidits in Zahedan. Iran Biomed Rep. 2017;6:108–12.

    Article  CAS  PubMed  Google Scholar 

  19. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, et al. Constitutive Clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem. 2012;287:9429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with Clathrin-associated adaptor complex AP-2. Immunity. 1997;6:583–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rallis KS, Hillyar CRT, Sideris M, Davies JK. T-cell-based immunotherapies for haematological cancers, part A: a SWOT analysis of immune checkpoint inhibitors (ICIs) and bispecific T-cell engagers (BiTEs). Anticancer Res. 2021;41:1123.

    Article  CAS  PubMed  Google Scholar 

  22. Arcaro A, Aubert M, del Hierro MEE, Khanzada UK, Angelidou S, Tetley TD, et al. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal. 2007;19:1081–92.

    Article  CAS  PubMed  Google Scholar 

  23. Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: How cytoskeleton networks control intracellular calcium flux. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2014;1838:557–68.

  24. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–43.

    Article  CAS  PubMed  Google Scholar 

  25. Marengère LE, Waterhouse P, Duncan GS, Mittrücker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272:1170–3.

    Article  PubMed  Google Scholar 

  26. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282:2263–6.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider H, Prasad KV, Shoelson SE, Rudd CE. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med. 1995;181:351–5.

    Article  CAS  PubMed  Google Scholar 

  28. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  Google Scholar 

  29. (NIH) NCI. Cancer Types. National Cancer Institute (NIH); 2022.

  30. Park S, Shi Y, Kim BC, Jo MH, Cruz LO, Gou Z, et al. Force-dependent trans-endocytosis by breast cancer cells depletes costimulatory receptor CD80 and attenuates T cell activation. Biosens Bioelectron. 2020;165:112389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 2017;8:13703–15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol. 2022;11:44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 2005;117:538–50.

    Article  CAS  PubMed  Google Scholar 

  34. Soltani Asl M, Azimnasab-Sorkhabi P, Abolfathi AA, Hashemi AY. Identification of nucleotide polymorphism within the NeuroD1 candidate gene and its association with type 1 diabetes susceptibility in Iranian people by polymerase chain reaction-restriction fragment length polymorphism. J Pediatr Endocrinol Metab. 2020;33:1293–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kaur S, Ali A, Ahmad U, Siahbalaei Y, Pandey AK, Singh B. Role of single nucleotide polymorphisms (SNPs) in common migraine. Egypt J Neurol Psychiatry Neurosurg. 2019;55:47.

    Article  Google Scholar 

  36. Azimnasab-sorkhabi P, Soltani-asl M, Kfoury JR, Algenstaedt P, Mehmetzade HF, Hashemi AY. The impact of leptin and its receptor polymorphisms on type 1 diabetes in a population of northwest Iran. Ann Human Biol. 2022;49:317–22.

    Article  CAS  Google Scholar 

  37. Raut PK, Park P-H. Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: critical role of HO-1 signaling. Biochem Pharmacol. 2020;180:114186.

    Article  CAS  PubMed  Google Scholar 

  38. Karabon L, Kosmaczewska A, Bilinska M, Pawlak E, Ciszak L, Jedynak A, et al. The CTLA-4 gene polymorphisms are associated with CTLA-4 protein expression levels in multiple sclerosis patients and with susceptibility to disease. Immunology. 2009;128:e787–96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jin Y, Wang J, Bachtiar M, Chong SS, Lee CGL. Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genom. 2018;12:43.

    Article  CAS  Google Scholar 

  40. Le Goux C, Damotte D, Vacher S, Sibony M, Delongchamps NB, Schnitzler A, et al. Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: a retrospective study. Urol Oncol. 2017;35:257–63.

    Article  PubMed  Google Scholar 

  41. Kassardjian A, Shintaku PI, Moatamed NA. Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas. PLoS ONE. 2018;13:e0195958.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu H, Yang J, Jiao S, Li Y, Zhang W, Wang J. Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother. 2015;64:853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lan G, Li J, Wen Q, Lin L, Chen L, Chen L, et al. Cytotoxic T lymphocyte associated antigen 4 expression predicts poor prognosis in luminal B HER2-negative breast cancer. Oncol Lett. 2018;15:5093–7.

    PubMed  PubMed Central  Google Scholar 

  44. Kim JY, Lee E, Park K, Park WY, Jung HH, Ahn JS, et al. Immune signature of metastatic breast cancer: identifying predictive markers of immunotherapy response. Oncotarget. 2017;8:47400–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mao H, Zhang L, Yang Y, Zuo W, Bi Y, Gao W, et al. New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets. 2010;10:728–36.

    Article  CAS  PubMed  Google Scholar 

  46. Karpathiou G, Chauleur C, Mobarki M, Peoc’h M. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix. Pathol Res Pract. 2020;216:152782.

    Article  CAS  PubMed  Google Scholar 

  47. Pistillo MP, Tazzari PL, Palmisano GL, Pierri I, Bolognesi A, Ferlito F, et al. CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood. 2003;101:202–9.

    Article  CAS  PubMed  Google Scholar 

  48. Laurent S, Palmisano GL, Martelli AM, Kato T, Tazzari PL, Pierri I, et al. CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can be targeted with ligands to induce apoptosis. Br J Haematol. 2007;136:597–608.

    Article  CAS  PubMed  Google Scholar 

  49. Matsubar Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Delineation of immunoregulatory properties of adult T-cell leukemia cells. Int J Hematol. 2006;84:63–9.

    Article  PubMed  Google Scholar 

  50. Shimauchi T, Kabashima K, Tokura Y. Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells. Cancer Sci. 2008;99:98–106.

    CAS  PubMed  Google Scholar 

  51. Mittal AK, Chaturvedi NK, Rohlfsen RA, Gupta P, Joshi AD, Hegde GV, et al. Role of CTLA4 in the proliferation and survival of chronic lymphocytic leukemia. PLoS ONE. 2013;8:e70352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Do P, Beckwith KA, Cheney C, Tran M, Beaver L, Griffin BG, et al. Leukemic B cell CTLA-4 suppresses costimulation of T cells. J Immunol. 2019;202:2806–16.

    Article  CAS  PubMed  Google Scholar 

  53. Simone R, Tenca C, Fais F, Luciani M, De Rossi G, Pesce G, et al. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression. PLoS ONE. 2012;7:e44654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bao S, Jiang X, Jin S, Tu P, Lu J. TGF-β1 induces immune escape by enhancing PD-1 and CTLA-4 expression on t lymphocytes in hepatocellular carcinoma. Front Oncol. 2021;11:694145.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lafuente-Sanchis A, Zúñiga Á, Estors M, Martínez-Hernández NJ, Cremades A, Cuenca M, et al. Association of PD-1, PD-L1, and CTLA-4 gene expression and clinicopathologic characteristics in patients with non-small-cell lung cancer. Clin Lung Cancer. 2017;18:e109–16.

    Article  CAS  PubMed  Google Scholar 

  56. Paulsen EE, Kilvaer TK, Rakaee M, Richardsen E, Hald SM, Andersen S, et al. CTLA-4 expression in the non-small cell lung cancer patient tumor microenvironment: diverging prognostic impact in primary tumors and lymph node metastases. Cancer Immunol Immunother. 2017;66:1449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah KV, Chien AJ, Yee C, Moon RT. CTLA-4 is a direct target of Wnt/beta-catenin signaling and is expressed in human melanoma tumors. J Invest Dermatol. 2008;128:2870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Laurent S, Queirolo P, Boero S, Salvi S, Piccioli P, Boccardo S, et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. J Transl Med. 2013;11:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mo X, Zhang H, Preston S, Martin K, Zhou B, Vadalia N, et al. Interferon-γ signaling in melanocytes and melanoma cells regulates expression of CTLA-4. Can Res. 2018;78:436–50.

    Article  CAS  Google Scholar 

  60. Chakravarti N, Ivan D, Trinh VA, Glitza IC, Curry JL, Torres-Cabala C, et al. High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ipilimumab-treated melanoma patients. Melanoma Res. 2017;27(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  61. Regzedmaa O, Li Y, Li Y, Zhang H, Wang J, Gong H, et al. Prevalence of DLL3, CTLA-4 and MSTN expression in patients with small cell lung cancer. Onco Targets Ther. 2019;12:10043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inozume T, Hanada KI, Takeda K, Maeda T, Harada K, Kawamura T. Cytotoxic T-lymphocyte-associated protein 4 expressed by melanoma cells does not affect melanoma-specific cytotoxic T lymphocytes in the effector phase. J Dermatol. 2019;46:52–6.

    Article  CAS  PubMed  Google Scholar 

  63. Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res. 2015;3:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate BioRender.com for its services. Figures 1 and 2 were created with Biorender.com.

Funding

This work received no specific grant from any funding agency. The author thanks the National Council for the Improvement of Higher Education (CAPES) and the National Council for Scientific and Technological Development (CNPq) for the support of the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The original idea for the article was designed by PA, MS, and JRKJ. Literature searches and preparing the first draft of the manuscript were performed by PA and MS. Critically revising was performed by PA, MS, and JRKJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Parviz Azimnasab-sorkhabi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimnasab-sorkhabi, P., Soltani-asl, M. & Kfoury Junior, J.R. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in tumor cells. Human Cell 36, 1225–1232 (2023). https://doi.org/10.1007/s13577-023-00893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00893-8

Keywords

Navigation