Skip to main content

Advertisement

Log in

Mitochondria: how eminent in ageing and neurodegenerative disorders?

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

tra3-NPA:

3-Nitropropionic acid

6-OHDA:

6-Hydroxydopamine

AD:

Alzheimer’s disease

AKG:

α-Ketoglutarate

ALP:

Autophagy-lysosomal pathway

ALS:

Amyotrophic lateral sclerosis

ANT:

Adenine nucleotide translocator

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

Aβ:

Amyloid-β

BBD:

Bladder and bowel dysfunction

Bcl-2:

B-cell lymphoma 2

BNIP3:

Bcl2-interacting protein 3

BNIP3L:

BCL2/adenovirus E1B 19-kDa-interacting protein 3-like

BrdU:

Bromodeoxyuridine

C21orf2:

Chromosome 21 open reading frame 2

CAG:

Cytosine, adenine, guanine

CatD:

Cathepsin D

CCNF:

Cyclin F

cGAS:

Cyclic GMP-AMP synthase

CHCHD10:

Coiled-coil-helix-coiled-coil-helix domain-containing protein 10, mitochondrial

CK2:

Casein kinase 2

CNS:

Central nervous system

COX:

Cytochrome c oxidase

COXIV:

COX subunit 4

CPEO:

Chronic progressive external ophthalmoplegia

CSF:

Cerebrospinal fluid

CypD:

Cyclophilin D

cyt c:

Cytochrome complex

DAT:

Dopamine transporter

DP:

Diffuse plaque

DRP1:

Dynamin-related protein 1

DUB:

Deubiquitinating enzyme

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

fALS:

Familial amyotrophic lateral sclerosis

FIS1:

Fission protein 1

FUS/TLS:

Fused in sarcoma/translocated in liposarcoma

GABA:

γ-Aminobutyric acid

GLDH:

Glutamate dehydrogenase

hASC:

Human adipose-derived stem cell

HD:

Huntington’s disease

HDAC:

Histone deacetylase

HMOX2:

Haeme oxygenase 2

HSR:

Heat shock response

HTT:

Huntingtin

IMM:

Inner mitochondrial membrane

LB:

Lewy body

LIR:

LC3-interacting region

LS:

Lysosomal system

MAOB:

Monoamine oxidase B

MATR3:

Matrin 3

MBP:

Myelin basic protein

MFN1:

Mitofusins 1

MnSOD:

Manganese superoxide dismutase

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mPTP:

Mitochondrial permeability transition pore

MS:

Multiple sclerosis

mtDNA:

Mitochondrial DNA

mtHtt:

Mutant Htt

MtMP:

Mitochondrial membrane potential

NAA:

N-acetyl aspartate

NCX:

Na+/Ca2+ exchanger

nDNA:

Nuclear DNA

NEK1:

NIMA-related kinase 1

NF:

Neurofilament

NFT:

Neurofibrillary tangle

NGF:

Nerve growth factor

NIMA:

Never in mitosis gene a

NO:

Nitric oxide

NP:

Neuritic plaque

NRF2:

Nuclear factor erythroid 2-related factor 2

OMM:

Outer mitochondrial membrane

OPA1:

Optic atrophy 1

OPTN:

Optineurin

OXPHOS:

Oxidative phosphorylation

PAS:

Pre-autophagosomal structure

PD:

Parkinson’s disease

PGAM5:

Phosphoglycerate mutase 5

PGC-1α:

PPAR-gamma coactivator 1-alpha

PINK1:

PTEN-induced kinase 1

PLP:

Proteolipid protein

PN:

Proteostasis network

polyQ:

Polyglutamate

PPAR:

Peroxisome proliferator-activated receptor

PRDX3:

Peroxiredoxin III

PRx:

Peroxiredoxin

PTM:

Post-translational modification

P-τ:

τ Protein

RIRR:

ROS-induced ROS release

RMS:

Rostral migratory stream

ROS:

Reactive oxygen species

sALS:

Sporadic amyotrophic lateral sclerosis

SNpc:

Substantia nigra pars compacta

SOD1:

Superoxide dismutase 1

Sp1:

Specificity protein 1*

STING:

Stimulator of interferon genes

TBK1:

TANK-binding kinase 1

TCE:

Trichloroethylene

TDP-43:

Transactive response DNA-binding protein 43 kDa

Trx:

Thioredoxin

TUBA4A:

Tubulin alpha-4A

Ub:

Ubiquitin

Ubl:

Ubiquitin-like

ULK1:

Unc-51-like autophagy activating kinase 1

UPP:

Ubiquitin–proteasome pathway

UPR:

Unfolded protein response

UPS:

Ubiquitin–proteasome system

VCP:

Valosin-containing protein

VDAC:

Voltage-dependent anion channel

α-syn:

α-Synuclein

References

  1. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004;53(suppl 1):S96. https://doi.org/10.2337/diabetes.53.2007.S96.

    Article  CAS  Google Scholar 

  2. Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radical Biol Med. 2005;38(10):1278–95. https://doi.org/10.1016/j.freeradbiomed.2005.02.014.

    Article  CAS  Google Scholar 

  3. Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta (BBA) Bioenerg. 1998;1366(1):211–23. https://doi.org/10.1016/S0005-2728(98)00114-5.

    Article  CAS  Google Scholar 

  4. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22. https://doi.org/10.1038/ncb0910-814.

    Article  CAS  Google Scholar 

  5. Tolkovsky AM. Mitophagy. Biochim Biophys Acta (BBA) Mol Cell Res. 2009;1793(9):1508–15. https://doi.org/10.1016/j.bbamcr.2009.03.002.

    Article  CAS  Google Scholar 

  6. Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease. J Cell Biol. 2020. https://doi.org/10.1083/jcb.202004029.

    Article  Google Scholar 

  7. Archibald JM. Endosymbiosis and eukaryotic cell evolution. Curr Biol. 2015;25(19):R911–21. https://doi.org/10.1016/j.cub.2015.07.055.

    Article  CAS  Google Scholar 

  8. Chinnery PF, Schon EA. Mitochondria. J Neurol Neurosurg Psychiatry. 2003;74(9):1188. https://doi.org/10.1136/jnnp.74.9.1188.

    Article  CAS  Google Scholar 

  9. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98. https://doi.org/10.1038/nrc3365.

    Article  CAS  Google Scholar 

  10. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7. https://doi.org/10.1038/ng1769.

    Article  CAS  Google Scholar 

  11. Durham SE, Samuels DC, Chinnery PF. Is selection required for the accumulation of somatic mitochondrial DNA mutations in post-mitotic cells? Neuromuscul Disord. 2006;16(6):381–6. https://doi.org/10.1016/j.nmd.2006.03.012.

    Article  CAS  Google Scholar 

  12. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20. https://doi.org/10.1038/ng1778.

    Article  CAS  Google Scholar 

  13. Müller-Höcker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol. 1989;134(5):1167–73.

    Google Scholar 

  14. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford University Press; 2015.

    Book  Google Scholar 

  15. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14. https://doi.org/10.1161/circresaha.107.165472.

    Article  CAS  Google Scholar 

  16. Filippi MD, Ghaffari S. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood. 2019;133(18):1943–52. https://doi.org/10.1182/blood-2018-10-808873.

    Article  CAS  Google Scholar 

  17. Loureiro R, Mesquita KA, Magalhães-Novais S, Oliveira PJ, Vega-Naredo I. Mitochondrial biology in cancer stem cells. Semin Cancer Biol. 2017;47:18–28. https://doi.org/10.1016/j.semcancer.2017.06.012.

    Article  CAS  Google Scholar 

  18. McCully JD, Levitsky S, Del Nido PJ, Cowan DB. Mitochondrial transplantation for therapeutic use. Clin Transl Med. 2016;5(1):16. https://doi.org/10.1186/s40169-016-0095-4.

    Article  Google Scholar 

  19. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol. 2017;17(10):608–20. https://doi.org/10.1038/nri.2017.66.

    Article  CAS  Google Scholar 

  20. Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, et al. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol. 2015;6:461–71. https://doi.org/10.1016/j.redox.2015.08.021.

    Article  CAS  Google Scholar 

  21. Salimi A, Roudkenar MH, Seydi E, Sadeghi L, Mohseni A, Pirahmadi N, et al. Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest. 2017;35(3):174–86. https://doi.org/10.1080/07357907.2016.1276187.

    Article  CAS  Google Scholar 

  22. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77. https://doi.org/10.1016/S1534-5807(04)00099-1.

    Article  CAS  Google Scholar 

  23. Wang Y, Qin Z-H. Coordination of autophagy with other cellular activities. Acta Pharmacol Sinica. 2013;34(5):585–94. https://doi.org/10.1038/aps.2012.194.

    Article  CAS  Google Scholar 

  24. Veljanovski V, Batoko H. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins. Front Plant Sci. 2014;5:308.

    Article  Google Scholar 

  25. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39(1):359–407. https://doi.org/10.1146/annurev.genet.39.110304.095751.

    Article  CAS  Google Scholar 

  26. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50. https://doi.org/10.1152/physrev.00026.2013.

    Article  CAS  Google Scholar 

  27. Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell. 2009;20(22):4730–8. https://doi.org/10.1091/mbc.e09-03-0225.

    Article  CAS  Google Scholar 

  28. Shintani T, Huang W-P, Stromhaug PE, Klionsky DJ. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell. 2002;3(6):825–37. https://doi.org/10.1016/S1534-5807(02)00373-8.

    Article  CAS  Google Scholar 

  29. Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ. Reticulocyte maturation and variant red blood cells. Front Physiol. 2022. https://doi.org/10.3389/fphys.2022.834463.

    Article  Google Scholar 

  30. Géminard C, De Gassart A, Vidal M. Review: reticulocyte maturation: mitoptosis and exosome release. Biocell. 2002;26(2):205–15.

    Article  Google Scholar 

  31. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4. https://doi.org/10.1038/nature04723.

    Article  CAS  Google Scholar 

  32. Kundu M, Lindsten T, Yang C-Y, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112(4):1493–502. https://doi.org/10.1182/blood-2008-02-137398.

    Article  CAS  Google Scholar 

  33. Marinković M, Novak I. A brief overview of BNIP3L/NIX receptor-mediated mitophagy. FEBS Open Bio. 2021;11(12):3230–6.

    Google Scholar 

  34. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454(7201):232–5. https://doi.org/10.1038/nature07006.

    Article  CAS  Google Scholar 

  35. Shi R-Y, Zhu S-H, Li V, Gibson SB, Xu X-S, Kong J-M. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20(12):1045–55. https://doi.org/10.1111/cns.12325.

    Article  CAS  Google Scholar 

  36. Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787–95. https://doi.org/10.1038/cr.2014.75.

    Article  CAS  Google Scholar 

  37. Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 2014;54(3):362–77. https://doi.org/10.1016/j.molcel.2014.02.034.

    Article  CAS  Google Scholar 

  38. Sun N, Yun J, Liu J, Malide D, Liu C, Rovira Ilsa I, et al. Measuring in vivo mitophagy. Mol Cell. 2015;60(4):685–96. https://doi.org/10.1016/j.molcel.2015.10.009.

    Article  CAS  Google Scholar 

  39. Course MM, Wang X. Transporting mitochondria in neurons. F1000Research. 2016. https://doi.org/10.12688/f1000research.7864.1.

    Article  Google Scholar 

  40. Kugler P, Baier G. Mitochondrial enzymes related to glutamate and GABA metabolism in the hippocampus of young and aged rats: a quantitative histochemical study. Neurochem Res. 1992;17(2):179–85. https://doi.org/10.1007/bf00966797.

    Article  CAS  Google Scholar 

  41. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51.

    Article  CAS  Google Scholar 

  42. Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discovery. 2010;9(5):387–98. https://doi.org/10.1038/nrd2896.

    Article  CAS  Google Scholar 

  43. Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frölich L, et al. The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol. 2011;95(4):718–28. https://doi.org/10.1016/j.pneurobio.2011.11.008.

    Article  Google Scholar 

  44. Perry RJ, Watson P, Hodges JR. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment. Neuropsychologia. 2000;38(3):252–71. https://doi.org/10.1016/S0028-3932(99)00079-2.

    Article  CAS  Google Scholar 

  45. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541.

    Article  CAS  Google Scholar 

  46. Duncan JE, Goldstein LSB. The genetics of axonal transport and axonal transport disorders. PLoS Genet. 2006;2(9): e124.

    Article  Google Scholar 

  47. Miao J, Shi R, Li L, Chen F, Zhou Y, Tung YC, et al. Pathological tau from Alzheimer’s brain induces site-specific hyperphosphorylation and SDS-and reducing agent-resistant aggregation of tau in vivo. Front Aging Neurosci. 2019;11:34.

    Article  CAS  Google Scholar 

  48. Selkoe DJ. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 1998;8(11):447–53.

    Article  CAS  Google Scholar 

  49. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1): a006189. https://doi.org/10.1101/cshperspect.a006189.

    Article  CAS  Google Scholar 

  50. Pressman P, Rabinovici GD. Alzheimer’s disease. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. 2nd ed. Oxford: Academic Press; 2014. p. 122–7.

    Chapter  Google Scholar 

  51. Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal. 2011;16(12):1434–55. https://doi.org/10.1089/ars.2011.4149.

    Article  CAS  Google Scholar 

  52. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45–53. https://doi.org/10.1016/j.molmed.2007.12.002.

    Article  CAS  Google Scholar 

  53. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U. Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J Alzheimer’s Dis. 2010. https://doi.org/10.3233/JAD-2010-100504.

    Article  Google Scholar 

  54. Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2010;20:S487–98. https://doi.org/10.3233/JAD-2010-100306.

    Article  CAS  Google Scholar 

  55. Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47(2):183–9. https://doi.org/10.1016/j.ceca.2009.12.014.

    Article  CAS  Google Scholar 

  56. Chen JX, Yan SS. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimer’s Dis JAD. 2010;20(Suppl 2):S569–78. https://doi.org/10.3233/jad-2010-100357.

    Article  Google Scholar 

  57. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, et al. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. PROTEOMICS Clin Appl. 2009;3(6):682–93. https://doi.org/10.1002/prca.200800161.

    Article  CAS  Google Scholar 

  58. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, et al. Redox proteomic identification of 4-Hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30(1):107–20. https://doi.org/10.1016/j.nbd.2007.12.007.

    Article  CAS  Google Scholar 

  59. Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radical Biol Med. 2013;62:157–69. https://doi.org/10.1016/j.freeradbiomed.2012.09.027.

    Article  CAS  Google Scholar 

  60. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23. https://doi.org/10.1523/jneurosci.21-09-03017.2001.

    Article  CAS  Google Scholar 

  61. Sheng B, Wang X, Su B, Lee H-G, Casadesus G, Perry G, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem. 2012;120(3):419–29. https://doi.org/10.1111/j.1471-4159.2011.07581.x.

    Article  CAS  Google Scholar 

  62. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090–103. https://doi.org/10.1523/jneurosci.1357-09.2009.

    Article  CAS  Google Scholar 

  63. Edland SD, Silverman JM, Peskind ER, Tsuang D, Wijsman E, Morris JC. Increased risk of dementia in mothers of Alzheimer’s disease cases: evidence for maternal inheritance. Neurology. 1996;47(1):254–6. https://doi.org/10.1212/wnl.47.1.254.

    Article  CAS  Google Scholar 

  64. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–66. https://doi.org/10.1016/j.tins.2017.01.002.

    Article  CAS  Google Scholar 

  65. Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187–93. https://doi.org/10.1038/nature25143.

    Article  CAS  Google Scholar 

  66. Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res. 2000;25(9):1161–72. https://doi.org/10.1023/A:1007675508413.

    Article  CAS  Google Scholar 

  67. Ji ZS, Müllendorff K, Cheng IH, Miranda RD, Huang Y, Mahley RW. Reactivity of apolipoprotein E4 and amyloid beta peptide: lysosomal stability and neurodegeneration. J Biol Chem. 2006;281(5):2683–92. https://doi.org/10.1074/jbc.M506646200.

    Article  CAS  Google Scholar 

  68. Wang L, Guo L, Lu L, Sun H, Shao M, Beck SJ, et al. Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer’s disease. PLoS ONE. 2016;11(3): e0150441. https://doi.org/10.1371/journal.pone.0150441.

    Article  CAS  Google Scholar 

  69. de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35. https://doi.org/10.1016/S1474-4422(06)70471-9.

    Article  Google Scholar 

  70. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.

    Article  CAS  Google Scholar 

  71. Mehta P, Kifley A, Wang JJ, Rochtchina E, Mitchell P, Sue CM. Population prevalence and incidence of Parkinson’s disease in an Australian community. Intern Med J. 2007;37(12):812–4. https://doi.org/10.1111/j.1445-5994.2007.01433.x.

    Article  CAS  Google Scholar 

  72. Foundation TPs. Non-Movement Symptoms. 1957. https://www.parkinson.org/Understanding-Parkinsons/Non-Movement-Symptoms. Accessed 21 Mar 2022.

  73. Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, et al. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol. 2016;42(1):77–94. https://doi.org/10.1111/nan.12297.

    Article  CAS  Google Scholar 

  74. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–40. https://doi.org/10.1038/42166.

    Article  CAS  Google Scholar 

  75. Galloway PG, Grundke-Iqbal I, Iqbal K, Perry G. Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles. J Neuropathol Exp Neurol. 1988;47(6):654–63.

    Article  CAS  Google Scholar 

  76. Mahul-Mellier A-L, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci. 2020;117(9):4971–82.

    Article  CAS  Google Scholar 

  77. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979. https://doi.org/10.1126/science.6823561.

    Article  CAS  Google Scholar 

  78. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979;1(3):249–54. https://doi.org/10.1016/0165-1781(79)90006-4.

    Article  CAS  Google Scholar 

  79. Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA. 1982;79(20):6385–9. https://doi.org/10.1073/pnas.79.20.6385.

    Article  CAS  Google Scholar 

  80. Storch A, Ludolph AC, Schwarz J. Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm. 2004;111(10):1267–86. https://doi.org/10.1007/s00702-004-0203-2.

    Article  CAS  Google Scholar 

  81. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA. 1985;82(7):2173–7. https://doi.org/10.1073/pnas.82.7.2173.

    Article  CAS  Google Scholar 

  82. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301–6. https://doi.org/10.1038/81834.

    Article  CAS  Google Scholar 

  83. Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147(1):395–412. https://doi.org/10.1196/annals.1427.027.

    Article  CAS  Google Scholar 

  84. Song S, Jang S, Park J, Bang S, Choi S, Kwon K-Y, et al. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with parkinson disease in mammalian cells and Drosophila. J Biol Chem. 2013;288(8):5660–72. https://doi.org/10.1074/jbc.M112.430801.

    Article  CAS  Google Scholar 

  85. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56(3):336–41. https://doi.org/10.1002/ana.20256.

    Article  CAS  Google Scholar 

  86. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun. 2013;4(1):1982. https://doi.org/10.1038/ncomms2982.

    Article  CAS  Google Scholar 

  87. Walden H, Muqit MMK. Ubiquitin and Parkinson’s disease through the looking glass of genetics. Biochem J. 2017;474(9):1439–51.

    Article  CAS  Google Scholar 

  88. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, et al. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20(9):1726–37. https://doi.org/10.1093/hmg/ddr048.

    Article  CAS  Google Scholar 

  89. Ryan TA, Tumbarello DA. Optineurin: a coordinator of membrane-associated cargo trafficking and autophagy. Front Immunol. 2018;9:1024.

    Article  Google Scholar 

  90. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Investig. 2008;118(2):777–88.

    CAS  Google Scholar 

  91. Polymeropoulos Mihael H, Lavedan C, Leroy E, Ide Susan E, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7. https://doi.org/10.1126/science.276.5321.2045.

    Article  Google Scholar 

  92. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem. 2011;286(23):20710–26. https://doi.org/10.1074/jbc.M110.213538.

    Article  CAS  Google Scholar 

  93. Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, et al. α-synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem. 2015;290(30):18467–77. https://doi.org/10.1074/jbc.M115.641746.

    Article  CAS  Google Scholar 

  94. Bates GP. The molecular genetics of Huntington disease—a history. Nat Rev Genet. 2005;6(10):766–73. https://doi.org/10.1038/nrg1686.

    Article  CAS  Google Scholar 

  95. Vonsattel J-P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44(6):559–77. https://doi.org/10.1097/00005072-198511000-00003.

    Article  CAS  Google Scholar 

  96. Folstein SE, Brandt J, Folstein MF. Huntington’s disease. Subcortical dementia. New York: Oxford University Press; 1990. p. 87–107.

    Google Scholar 

  97. Reddy PH, Williams M, Tagle DA. Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci. 1999;22(6):248–55. https://doi.org/10.1016/S0166-2236(99)01415-0.

    Article  CAS  Google Scholar 

  98. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet. 2004;13(14):1407–20. https://doi.org/10.1093/hmg/ddh162.

    Article  CAS  Google Scholar 

  99. Orr AL, Li S, Wang C-E, Li H, Wang J, Rong J, et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci. 2008;28(11):2783. https://doi.org/10.1523/JNEUROSCI.0106-08.2008.

    Article  CAS  Google Scholar 

  100. Reddy PH, Shirendeb UP. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim Biophys Acta. 2012;1822(2):101–10. https://doi.org/10.1016/j.bbadis.2011.10.016.

    Article  CAS  Google Scholar 

  101. Li S, Li YP, Liu DE, Liu NH. AC-005 CAG repeat polymorphism in the androgen receptor gene and male infertility. Reprod Biomed Online. 2006;12:19. https://doi.org/10.1016/S1472-6483(11)60453-7.

    Article  Google Scholar 

  102. Acevedo-Torres K, Berríos L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, et al. Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington’s disease. DNA Repair. 2009;8(1):126–36. https://doi.org/10.1016/j.dnarep.2008.09.004.

    Article  CAS  Google Scholar 

  103. Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet. 2000;26(1):29–36. https://doi.org/10.1038/79139.

    Article  CAS  Google Scholar 

  104. Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol. 1998;143(6):1457–70. https://doi.org/10.1083/jcb.143.6.1457.

    Article  CAS  Google Scholar 

  105. Sayer JA, Manczak M, Akileswaran L, Reddy PH, Coghlan VM. Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin. NeuroMol Med. 2005;7(4):297–310. https://doi.org/10.1385/NMM:7:4:297.

    Article  CAS  Google Scholar 

  106. Khalil B, El Fissi N, Aouane A, Cabirol-Pol MJ, Rival T, Liévens JC. PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell Death Dis. 2015;6(1):e1617-e. https://doi.org/10.1038/cddis.2014.581.

    Article  CAS  Google Scholar 

  107. Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet. 2005;14(19):2871–80. https://doi.org/10.1093/hmg/ddi319.

    Article  CAS  Google Scholar 

  108. Wong YC, Holzbaur ELF. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci. 2014;34(4):1293. https://doi.org/10.1523/JNEUROSCI.1870-13.2014.

    Article  CAS  Google Scholar 

  109. Guo X, Sun X, Hu D, Wang Y-J, Fujioka H, Vyas R, et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington’s disease. Nat Commun. 2016;7(1):12646. https://doi.org/10.1038/ncomms12646.

    Article  CAS  Google Scholar 

  110. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85(12):1386–95.

    Article  Google Scholar 

  111. Trust MS. Nerve cells (neurons). 1993. https://mstrust.org.uk/a-z/nerve-cells-neurons#:~:text=Multiple%20sclerosis%20is%20thought%20to,cells%20may%20begin%20to%20die. Accessed 3 July 2022.

  112. Pham-Dinh D, Popot J-L, Boespflug-Tanguy O, Landrieu P, Deleuze J-F, Boue J, et al. Pelizaeus-Merzbacher disease: a valine to phenylalanine point mutation in a putative extracellular loop of myelin proteolipid. Proc Natl Acad Sci. 1991;88(17):7562–6.

    Article  CAS  Google Scholar 

  113. Simons M, Krämer E-M, Macchi P, Rathke-Hartlieb S, Trotter J, Nave K-A, et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J Cell Biol. 2002;157(2):327–36.

    Article  CAS  Google Scholar 

  114. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58. https://doi.org/10.1038/nri3871.

    Article  CAS  Google Scholar 

  115. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10(4):225–38.

    Article  CAS  Google Scholar 

  116. Skylar-Scott IA, Wilson RS, Amariglio RE. Frequency, number, and timing of mental activity and risk of mild cognitive impairment AAN enterprises. Neurology. 2019;93(6):237–8.

    Article  Google Scholar 

  117. Queensland M. Sensory symptoms. 1958. https://www.msqld.org.au/health-wellbeing/sensory-symptoms/. Accessed 15 Aug 2022.

  118. Service TNH. Multiple sclerosis symptoms. 1948. https://www.nhs.uk/conditions/multiple-sclerosis/symptoms/. Accessed 15 Apr 2022.

  119. French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB. Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res. 2009;87(14):3076–87.

    Article  CAS  Google Scholar 

  120. Hung AC, Porter AG. p53 mediates nitric oxide-induced apoptosis in murine neural progenitor cells. Neurosci Lett. 2009;467(3):241–6.

    Article  CAS  Google Scholar 

  121. Lee CS, Han ES, Park ES, Bang H. Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine. Brain Res. 2005;1036(1–2):18–26.

    Article  CAS  Google Scholar 

  122. Leite ACR, Oliveira HCF, Utino FL, Garcia R, Alberici LC, Fernandes MP, et al. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochim Biophys Acta (BBA) Bioenerg. 2010;1797(6–7):1210–6.

    Article  CAS  Google Scholar 

  123. Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr. Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem. 2001;76(4):1050–6.

    Article  CAS  Google Scholar 

  124. Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, et al. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem. 2000;275(29):22387–94.

    Article  CAS  Google Scholar 

  125. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222–32.

    Article  CAS  Google Scholar 

  126. Kozin MS, Kulakova OG, Favorova OO. Involvement of mitochondria in neurodegeneration in multiple sclerosis. Biochem Mosc. 2018;83(7):813–30.

    Article  CAS  Google Scholar 

  127. Zang Q, Maass DL, White J, Horton JW. Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy. J Appl Physiol. 2007;102(1):103–12.

    Article  CAS  Google Scholar 

  128. Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav. 2012;100(4):656–64.

    Article  CAS  Google Scholar 

  129. Aliev G, Obrenovich ME, Tabrez S, Jabir NR, Reddy VP, Li Y, et al. Link between cancer and Alzheimer disease via oxidative stress induced by nitric oxide-dependent mitochondrial DNA overproliferation and deletion. Oxid Med Cell Longev. 2013. https://doi.org/10.1155/2013/962984.

    Article  Google Scholar 

  130. Ding S, Contrevas JR, Abramov AY, Qi Z, Duchen MR. Mild stress of caffeine increased mtDNA content in skeletal muscle cells: the interplay between Ca2+ transients and nitric oxide. J Muscle Res Cell Motil. 2012;33(5):327–37.

    Article  CAS  Google Scholar 

  131. Rachek LI, Grishko VI, LeDoux SP, Wilson GL. Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis. Free Radical Biol Med. 2006;40(5):754–62.

    Article  CAS  Google Scholar 

  132. Dziedzic T, Metz I, Dallenga T, König FB, Müller S, Stadelmann C, et al. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol. 2010;20(5):976–85.

    Google Scholar 

  133. Balaratnasingam C, Morgan WH, Johnstone V, Cringle SJ, Yu D-Y. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve. Invest Ophthalmol Vis Sci. 2009;50(6):2824–38.

    Article  Google Scholar 

  134. Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol. 2002;120(6):791–6.

    Article  Google Scholar 

  135. Rossi S, Studer V, Motta C, De Chiara V, Barbieri F, Bernardi G, et al. Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler J. 2012;18(11):1633–5.

    Article  CAS  Google Scholar 

  136. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci. 2003;23:7881–8.

    Article  CAS  Google Scholar 

  137. Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68(4):610–38.

    Article  CAS  Google Scholar 

  138. Martin M, Iyadurai SJ, Gassman A, Gindhart JG Jr, Hays TS, Saxton WM. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell. 1999;10(11):3717–28.

    Article  CAS  Google Scholar 

  139. Tang Y-g, Zucker RS. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron. 1997;18(3):483–91.

    Article  CAS  Google Scholar 

  140. Billups B, Forsythe ID. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci. 2002;22(14):5840–7.

    Article  CAS  Google Scholar 

  141. David G, Barrett EF. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol. 2003;548(2):425–38.

    Article  CAS  Google Scholar 

  142. Medler K, Gleason EL. Mitochondrial Ca2+ buffering regulates synaptic transmission between retinal amacrine cells. J Neurophysiol. 2002;87(3):1426–39.

    Article  CAS  Google Scholar 

  143. Talbot JD, David G, Barrett EF. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. J Neurophysiol. 2003;90(1):491–502.

    Article  CAS  Google Scholar 

  144. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65.

    Article  CAS  Google Scholar 

  145. Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci USA. 2014;111(26):9633–8. https://doi.org/10.1073/pnas.1404651111.

    Article  CAS  Google Scholar 

  146. Rabilloud T, Heller M, Rigobello M-P, Bindoli A, Aebersold R, Lunardi J. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics. 2001;1(9):1105–10. https://doi.org/10.1002/1615-9861(200109)1:9%3c1105::AID-PROT1105%3e3.0.CO;2-M.

    Article  CAS  Google Scholar 

  147. Witte ME, Nijland PG, Drexhage JA, Gerritsen W, Geerts D, van Het Hof B, vanderValkP, vanHorssenJ, et al. Reduced expression of PGC-1 partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 2013;125:231–43.

    Article  CAS  Google Scholar 

  148. Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134(7):1914–24.

    Article  Google Scholar 

  149. Mehta P, Kaye W, Bryan L, Larson T, Copeland T, Wu J, et al. Prevalence of amyotrophic lateral sclerosis—United States, 2012–2013. Morb Mortal Wkly Rep Recomm Rep. 2016;65(8):1–12.

    Google Scholar 

  150. Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial dysfunction, neurogenesis, and epigenetics: putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front Neurosci. 2020;14:679.

    Article  Google Scholar 

  151. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. 2019;13:1310.

    Article  Google Scholar 

  152. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102.

    Article  CAS  Google Scholar 

  153. Wang W, Wang L, Lu J, Siedlak SL, Fujioka H, Liang J, et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med. 2016;22(8):869–78.

    Article  CAS  Google Scholar 

  154. Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity. 2020;52(3):475-86.e5. https://doi.org/10.1016/j.immuni.2020.02.002.

    Article  CAS  Google Scholar 

  155. Tan W, Pasinelli P, Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA) Mol Basis Dis. 2014;1842(8):1295–301.

    Article  CAS  Google Scholar 

  156. de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA. Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron. 2017;93(4):867-81.e6. https://doi.org/10.1016/j.neuron.2017.01.010.

    Article  CAS  Google Scholar 

  157. Hirabayashi Y, Kwon S-K, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 2017;358(6363):623–30.

    Article  CAS  Google Scholar 

  158. Kwon S-K, Sando R III, Lewis TL, Hirabayashi Y, Maximov A, Polleux F. LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 2016;14(7): e1002516. https://doi.org/10.1371/journal.pbio.1002516.

    Article  CAS  Google Scholar 

  159. Marland JRK, Hasel P, Bonnycastle K, Cousin MA. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals *. J Biol Chem. 2016;291(5):2080–6. https://doi.org/10.1074/jbc.M115.686956.

    Article  CAS  Google Scholar 

  160. Vaccaro V, Devine MJ, Higgs NF, Kittler JT. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity. EMBO Rep. 2017;18(2):231–40. https://doi.org/10.15252/embr.201642710.

    Article  CAS  Google Scholar 

  161. Halestrap AP. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999;66:181–203. https://doi.org/10.1042/bss0660181.

    Article  CAS  Google Scholar 

  162. Zoratti M, Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta Rev Biomembr. 1995;1241(2):139–76. https://doi.org/10.1016/0304-4157(95)00003-A.

    Article  Google Scholar 

  163. Muyderman H, Chen T. Mitochondrial dysfunction in amyotrophic lateral sclerosis—a valid pharmacological target? Br J Pharmacol. 2014;171(8):2191–205. https://doi.org/10.1111/bph.12476.

    Article  CAS  Google Scholar 

  164. Booth Lauren N, Brunet A. The aging epigenome. Mol Cell. 2016;62(5):728–44. https://doi.org/10.1016/j.molcel.2016.05.013.

    Article  CAS  Google Scholar 

  165. Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev. 2013;12(2):661–84. https://doi.org/10.1016/j.arr.2012.02.001.

    Article  CAS  Google Scholar 

  166. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.

    Article  CAS  Google Scholar 

  167. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4–13. https://doi.org/10.1038/hdy.2010.54.

    Article  CAS  Google Scholar 

  168. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11(4):694–703.

    Article  CAS  Google Scholar 

  169. Foundation LEA. Epigenetic Alterations. 2021. https://www.lifespan.io/topic/epigenetic-alterations/#:~:text=Epigenetic%20alterations%20in%20aging%20include,support%20structure%20that%20assists%20or. Accessed 3 Apr 2022.

  170. Jayaraj GG, Hipp MS, Hartl FU. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol. 2020. https://doi.org/10.1101/cshperspect.a033951.

    Article  Google Scholar 

  171. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  CAS  Google Scholar 

  172. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science. 2011;333(6046):1109–12.

    Article  CAS  Google Scholar 

  173. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526(1):203–10. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00203.x.

    Article  CAS  Google Scholar 

  174. Santanasto AJ, Glynn NW, Jubrias SA, Conley KE, Boudreau RM, Amati F, et al. Skeletal muscle mitochondrial function and fatigability in older adults. J Gerontol Series A. 2015;70(11):1379–85. https://doi.org/10.1093/gerona/glu134.

    Article  CAS  Google Scholar 

  175. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37–42. https://doi.org/10.1038/nature16187.

    Article  CAS  Google Scholar 

  176. Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging. 2009;1(4):425–37. https://doi.org/10.18632/aging.100038.

    Article  CAS  Google Scholar 

  177. Yan Y, Finkel T. Autophagy as a regulator of cardiovascular redox homeostasis. Free Radical Biol Med. 2017;109:108–13. https://doi.org/10.1016/j.freeradbiomed.2016.12.003.

    Article  CAS  Google Scholar 

  178. Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521(7553):525–8. https://doi.org/10.1038/nature14300.

    Article  CAS  Google Scholar 

  179. Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci. 2013;110(21):8638. https://doi.org/10.1073/pnas.1216197110.

    Article  Google Scholar 

  180. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://doi.org/10.1038/nm.4222.

    Article  CAS  Google Scholar 

  181. Larsson N-G. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79(1):683–706. https://doi.org/10.1146/annurev-biochem-060408-093701.

    Article  CAS  Google Scholar 

  182. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Flint Beal M, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet. 1992;2(4):324–9. https://doi.org/10.1038/ng1292-324.

    Article  CAS  Google Scholar 

  183. Yen T-C, Su J-H, King K-L, Wei Y-H. Ageing-associated 5 kb deletion in human liver mitochondrial DNA. Biochem Biophys Res Commun. 1991;178(1):124–31. https://doi.org/10.1016/0006-291X(91)91788-E.

    Article  CAS  Google Scholar 

  184. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci. 1991;88(23):10614. https://doi.org/10.1073/pnas.88.23.10614.

    Article  CAS  Google Scholar 

  185. Holme E, Larsson NG, Oldfors A, Tulinius M, Sahlin P, Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A–>G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993;52(3):551–6.

    CAS  Google Scholar 

  186. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5. https://doi.org/10.1038/nature18928.

    Article  CAS  Google Scholar 

  187. Melchinger H, Jain K, Tyagi T, Hwa J. Role of platelet mitochondria: life in a nucleus-free zone. Front Cardiovasc Med. 2019;6:153. https://doi.org/10.3389/fcvm.2019.00153.

    Article  CAS  Google Scholar 

  188. Chen J, Zhong J, Wang LL, Chen YY. Mitochondrial transfer in cardiovascular disease: from mechanisms to therapeutic implications. Front Cardiovasc Med. 2021;8: 771298. https://doi.org/10.3389/fcvm.2021.771298.

    Article  CAS  Google Scholar 

  189. Mobarak H, Heidarpour M, Tsai PJ, Rezabakhsh A, Rahbarghazi R, Nouri M, et al. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci. 2019. https://doi.org/10.1186/s13578-019-0360-5.

    Article  Google Scholar 

  190. Chang CY, Liang MZ, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener. 2019;8:17. https://doi.org/10.1186/s40035-019-0158-8.

    Article  CAS  Google Scholar 

  191. der la Espino Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci. 2021;32(2):203–17. https://doi.org/10.1515/revneuro-2020-0068.

    Article  CAS  Google Scholar 

  192. Guariento A, Blitzer D, Doulamis I, Shin B, Moskowitzova K, Orfany A, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15–29. https://doi.org/10.1016/j.jtcvs.2019.06.111.

    Article  Google Scholar 

  193. Wu HC, Fan X, Hu CH, Chao YC, Liu CS, Chang JC, et al. Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomed Pharmacother. 2020;130:110520. https://doi.org/10.1016/j.biopha.2020.110520.

    Article  CAS  Google Scholar 

  194. Chang JC, Chao YC, Chang HS, Wu YL, Chang HJ, Lin YS, et al. Intranasal delivery of mitochondria for treatment of Parkinson’s Disease model rats lesioned with 6-hydroxydopamine. Sci Rep. 2021;11(1):10597. https://doi.org/10.1038/s41598-021-90094-w.

    Article  CAS  Google Scholar 

  195. Chang J-C, Wu S-L, Liu K-H, Chen Y-H, Chuang C-S, Cheng F-C, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res. 2016;170:40–56.

    Article  CAS  Google Scholar 

  196. Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J Alzheimer’s Dis JAD. 2019;72(2):587–604. https://doi.org/10.3233/jad-190853.

    Article  CAS  Google Scholar 

  197. Zhang W, Gu GJ, Shen X, Zhang Q, Wang GM, Wang PJ. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol Aging. 2015;36(3):1282–92. https://doi.org/10.1016/j.neurobiolaging.2014.10.040.

    Article  CAS  Google Scholar 

  198. Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion. 2017;34:91–100. https://doi.org/10.1016/j.mito.2017.02.005.

    Article  CAS  Google Scholar 

  199. Choi HS, Kim HJ, Oh JH, Park HG, Ra JC, Chang KA, et al. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease. Neurobiol Aging. 2015;36(10):2885–92. https://doi.org/10.1016/j.neurobiolaging.2015.06.022.

    Article  CAS  Google Scholar 

  200. Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63(12):4064–75. https://doi.org/10.2337/db14-0541.

    Article  CAS  Google Scholar 

  201. Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro. 2010;2(5): e00045. https://doi.org/10.1042/an20100019.

    Article  Google Scholar 

  202. McInnes J. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl Neurodegener. 2013;2(1):12. https://doi.org/10.1186/2047-9158-2-12.

    Article  CAS  Google Scholar 

  203. Yoon YG, Haug CL, Koob MD. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. Mitochondrion. 2007;7(3):223–9. https://doi.org/10.1016/j.mito.2006.11.022.

    Article  CAS  Google Scholar 

  204. Katrangi E, D’Souza G, Boddapati SV, Kulawiec M, Singh KK, Bigger B, et al. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res. 2007;10(4):561–70. https://doi.org/10.1089/rej.2007.0575.

    Article  Google Scholar 

  205. Brown MD, Cornejo BJ, Kuhn TB, Bamburg JR. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J Neurobiol. 2000;43(4):352–64. https://doi.org/10.1002/1097-4695(20000615)43:4%3c352::aid-neu4%3e3.0.co;2-t.

    Article  CAS  Google Scholar 

  206. Kapoor R, Turjanski N, Frankel J, Kleedorfer B, Lees A, Stern G, et al. Intranasal apomorphine: a new treatment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990;53(11):1015. https://doi.org/10.1136/jnnp.53.11.1015.

    Article  CAS  Google Scholar 

  207. Bertero E, O’Rourke B, Maack C. Response by bertero et al to letter regarding article, “mitochondria do not survive calcium overload.” Circ Res. 2020;126(8):e58–9. https://doi.org/10.1161/circresaha.120.316843.

    Article  CAS  Google Scholar 

  208. Xiao C, Davis FJ, Chauhan BC, Viola KL, Lacor PN, Velasco PT, et al. Brain transit and ameliorative effects of intranasally delivered anti-amyloid-β oligomer antibody in 5XFAD mice. J Alzheimer’s Dis JAD. 2013;35(4):777–88. https://doi.org/10.3233/jad-122419.

    Article  Google Scholar 

  209. Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, Rostami MK, Toosi SMR, Jahanian-Najafabadi A, et al. Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull. 2020;165:70–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Burn and Research Centre members for their help in preparing this paper.

Funding

Part of this work was supported by the National Institute for Medical Research and Development (NIMAD) [Grant No. 4000519] and Guilan University of Medical Sciences [Grant No. 400032407].

Author information

Authors and Affiliations

Authors

Contributions

CB: Investigation, Writing—Original Draft, Visualisation. NN-G: Investigation, Writing—Original Draft, Writing—Review and Editing. ZP-B: Investigation, Writing—Original Draft. KT: Writing—Review and Editing. YK: Writing—Review and Editing. TS: Writing—Review and Editing. AF: Investigation, Writing—Original Draft, Visualisation. AMR: Supervision, Visualisation, Writing—Review and Editing. MHR: Supervision, Project administration, Writing—Review and Editing.

Corresponding authors

Correspondence to Amaneh Mohammadi Roushnadeh or Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamshad, C., Najafi-Ghalehlou, N., Pourmohammadi-Bejarpasi, Z. et al. Mitochondria: how eminent in ageing and neurodegenerative disorders?. Human Cell 36, 41–61 (2023). https://doi.org/10.1007/s13577-022-00833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00833-y

Keywords

Navigation