Skip to main content
Log in

SRGAP2 controls colorectal cancer chemosensitivity via regulation of mitochondrial complex I activity

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Mitochondrial respiration and metabolism play an important role in the occurrence and development of colorectal cancer (CRC). In this study, we identified a functional pool of SLIT–ROBO Rho GTPase-activating protein 2 (SRGAP2) in the mitochondria of CRC cells as an important regulator of CRC chemosensitivity. We found that SRGAP2 levels were increased in CRC cells in comparison to normal colorectal cells. Loss of mitochondrial SRGAP2 led to significant decrease in mitochondrial respiration and strongly sensitized the CRC cells to chemotherapy drugs. Mechanistically, SRGAP2 physically interacts with mitochondrial complex I and positively modulates its activity. In particular, chemosensitization upon SRGAP2 loss was phenocopied by the treatment of complex I inhibitor. Thus, our results demonstrate that SRGAP2 functions as a key regulator of CRC chemosensitivity, identifying SRGAP2 as a promising therapeutic target to enhance the efficacy of chemotherapy in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

CRC transcriptome sequencing data and corresponding clinical data set were downloaded from TCGA (https://cancergenome.nih.gov, TCGA–COAD and TCGA–READ).

Abbreviations

CRC:

Colorectal cancer

TCGA:

The Cancer Genome Atlas

OCR:

Oxygen consumption rate

MTS:

Mitochondrial targeting signal

NLS:

Nuclear localization sequence

SRB:

Sulforhodamine B

5-FU:

5-Flourouracil

3’ UTR:

3′ Untranslated region

EV:

Empty vector

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol. 2016;8:57–84. https://doi.org/10.1177/1758834015614530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.

    Article  CAS  Google Scholar 

  4. Chekulayev V, et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep. 2015;4:111–25. https://doi.org/10.1016/j.bbrep.2015.08.020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaldma A, et al. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Int J Biochem Cell Biol. 2014;55:171–86. https://doi.org/10.1016/j.biocel.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  6. Boyle KA, et al. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem. 2018;293:14891–904. https://doi.org/10.1074/jbc.RA117.001469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin CS, et al. Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep. 2018;39:316–30. https://doi.org/10.3892/or.2017.6087.

    Article  CAS  PubMed  Google Scholar 

  8. Wen YA, et al. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 2019;26:1955–69. https://doi.org/10.1038/s41418-018-0265-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bosc C, Selak MA, Sarry JE. Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab. 2017;26:705–7. https://doi.org/10.1016/j.cmet.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  10. Denise C, et al. 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget. 2015;6:41706–21. https://doi.org/10.18632/oncotarget.5991.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vellinga TT, et al. SIRT1/PGC1alpha-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res. 2015;21:2870–9. https://doi.org/10.1158/1078-0432.CCR-14-2290.

    Article  CAS  PubMed  Google Scholar 

  12. Guerrier S, et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell. 2009;138:990–1004. https://doi.org/10.1016/j.cell.2009.06.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo SS, Bao SL. srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J Biol Chem. 2010;285:35133–41. https://doi.org/10.1074/jbc.M110.153429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, et al. Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma. Life Sci. 2021;277:119592. https://doi.org/10.1016/j.lfs.2021.119592.

    Article  CAS  PubMed  Google Scholar 

  15. Marko TA, et al. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep. 2016;6:39059. https://doi.org/10.1038/srep39059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatterjee A, et al. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria. Cell. 2016;167:722–38. https://doi.org/10.1016/j.cell.2016.09.052.

    Article  CAS  PubMed  Google Scholar 

  17. Chiu HY, et al. Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus. 2018;9:530–42. https://doi.org/10.1080/19491034.2018.1523665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988;8:4048–54. https://doi.org/10.1128/mcb.8.10.4048-4054.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia YH, et al. Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J Exp Med. 2019;216:1377–95. https://doi.org/10.1084/jem.20181394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang XJ, et al. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res. 2008;6:1499–506. https://doi.org/10.1158/1541-7786.MCR-07-2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yun CW, Han YS, Lee SH. PGC-1alpha controls mitochondrial biogenesis in drug-resistant colorectal cancer cells by regulating endoplasmic reticulum stress. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20071707.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Divakaruni AS, Rogers GW, Murphy AN. Measuring mitochondrial function in permeabilized cells using the seahorse XF analyzer or a clark-type oxygen electrode. Curr Protoc Toxicol. 2014;60:25.22-21.16. https://doi.org/10.1002/0471140856.tx2502s60.

    Article  Google Scholar 

  23. Murai M, Miyoshi H. Current topics on inhibitors of respiratory complex I. Biochim Biophys Acta. 1857;884–891:2016. https://doi.org/10.1016/j.bbabio.2015.11.009.

    Article  CAS  Google Scholar 

  24. Heinz S, et al. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep. 2017;7:45465. https://doi.org/10.1038/srep45465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiao Q, et al. Dynamic expression of srGAP2 in cell nuclei and cytoplasm during the differentiation of rat neural stem cells in vitro. Mol Med Rep. 2016;14:4599–605. https://doi.org/10.3892/mmr.2016.5795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masoud R, et al. Targeting mitochondrial complex I overcomes chemoresistance in high OXPHOS pancreatic cancer. Cell Rep Med. 2020;1: 100143. https://doi.org/10.1016/j.xcrm.2020.100143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida J, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497. https://doi.org/10.1016/j.isci.2021.103497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20:267–84. https://doi.org/10.1038/s41580-018-0092-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86. https://doi.org/10.1111/j.1432-1033.1996.00779.x.

    Article  CAS  PubMed  Google Scholar 

  30. Fukasawa Y, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14:1113–26. https://doi.org/10.1074/mcp.M114.043083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee J, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280:40398–401. https://doi.org/10.1074/jbc.C500140200.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem. 2010;285:14871–81. https://doi.org/10.1074/jbc.M109.069591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000;275:16202–12. https://doi.org/10.1074/jbc.275.21.16202.

    Article  CAS  PubMed  Google Scholar 

  34. Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86:685–714. https://doi.org/10.1146/annurev-biochem-060815-014352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the TCGA Research Network for providing its platforms and valuable data sets.

Funding

This present study was funded by Key Research and Development Project of Chuzhou (Grant no. 2020ZN007).

Author information

Authors and Affiliations

Authors

Contributions

TY, LG, JY, and ST were responsible for the concept and design of the original study. TY and LG performed the experiments and analysed data. JY and ST wrote the paper with input from all authors. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Yanhan Jia or Tao Sun.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Liu, G., Jia, Y. et al. SRGAP2 controls colorectal cancer chemosensitivity via regulation of mitochondrial complex I activity. Human Cell 35, 1928–1938 (2022). https://doi.org/10.1007/s13577-022-00781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00781-7

Keywords

Navigation