Skip to main content

Advertisement

Log in

Exosomal microRNA-551b-3p from bone marrow-derived mesenchymal stromal cells inhibits breast cancer progression via regulating TRIM31/Akt signaling

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) play an important role in the development of human cancer. Meanwhile, exosomes released by MSCs can mediate cell–cell communication by delivering microRNAs (miRNAs/miRs). Hence, this study aimed to explore the role of bone marrow mesenchymal stromal cell (BMSC)-derived exosomal miR-551b-3p in breast cancer. In this study, we found that upregulation of miR-551b-5p suppressed the proliferation and migration and induced the apoptosis of breast cancer cells via downregulating tripartite motif-containing protein 31 (TRIM31). In addition, miR-551b-5p could be transferred from BMSCs to breast cancer cells via exosomes; BMSC-derived exosomal miR-551b-3p suppressed the proliferation and migration and promoted the apoptosis and oxidative stress of MDA-MB-231 cells via inhibiting TRIM31. Furthermore, a xenograft mouse model was used to explore the role of BMSC-derived exosomal miR-551b-3p in vivo. We found that BMSC-derived exosomal miR-551b-3p inhibited tumor growth in a mouse xenograft model of breast cancer in vivo. Collectively, these findings indicated that BMSC-derived exosomal miR-551b-3p could suppress the development of breast cancer via downregulating TRIM31. Thus, miR-551b-3p could serve as a potential target for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li X, Zeng Z, Wang J, Wu Y, Chen W, Zheng L, et al. MicroRNA-9 and breast cancer. Biomed Pharmacothe = Biomed Pharmacother. 2020;122:109687. https://doi.org/10.1016/j.biopha.2019.109687.

    Article  CAS  Google Scholar 

  2. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global Cancer in women: burden and trends. Cancer Epidemiol, Biomark Prev. 2017;26(4):444–57. https://doi.org/10.1158/1055-9965.Epi-16-0858.

    Article  Google Scholar 

  3. Boukai A, Gonçalves AC, Padoan M, Andrade P, Carvalho N, Lemos F, et al. Outcome of patients with breast cancer treated in a private health care institution in Brazil. J Global Oncol. 2018;4:1–10. https://doi.org/10.1200/jgo.17.00143.

    Article  Google Scholar 

  4. Au FW, Ghai S, Lu FI, Moshonov H, Crystal P. Histological grade and immunohistochemical biomarkers of breast cancer: correlation to ultrasound features. J Ultrasound Med. 2017;36(9):1883–94. https://doi.org/10.1002/jum.14247.

    Article  PubMed  Google Scholar 

  5. Amin A, Shriver CD, Henry LR, Lenington S, Peoples GE, Stojadinovic A. Breast cancer screening compliance among young women in a free access healthcare system. J Surg Oncol. 2008;97(1):20–4. https://doi.org/10.1002/jso.20895.

    Article  PubMed  Google Scholar 

  6. Wang R, Zhu Y, Liu X, Liao X, He J, Niu L. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer. 2019;19(1):1091. https://doi.org/10.1186/s12885-019-6311-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, et al. MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis. 2018;9(10):1026. https://doi.org/10.1038/s41419-018-0949-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019–24. https://doi.org/10.1016/j.jcyt.2019.08.002.

    Article  CAS  PubMed  Google Scholar 

  9. Chen K, Liu Q, Tsang LL, Ye Q, Chan HC, Sun Y, et al. Human MSCs promotes colorectal cancer epithelial-mesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis. 2017;8(5): e2819. https://doi.org/10.1038/cddis.2017.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21030708.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):40. https://doi.org/10.1186/s12943-019-0959-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao F, Yu YQ. The prognostic roles of mRNAs of the exosomes derived from bone marrow stromal cells in common malignancies: a bioinformatic study. Onco Targets Ther. 2018;11:7979–86. https://doi.org/10.2147/ott.S172414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Shao S, Luo M, Huang S, Feng L, Yuan N, et al. Effects of rat bone marrow-derived mesenchymal stem cells on breast cancer cells with differing hormone receptor status. Oncol Lett. 2017;14(6):7269–75. https://doi.org/10.3892/ol.2017.7130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019;13:209. https://doi.org/10.3389/fnins.2019.00209.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902.

    Article  CAS  PubMed  Google Scholar 

  16. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16(1):148. https://doi.org/10.1186/s12943-017-0718-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang Y, Zhang D, Li L, Xin T, Zhao Y, Ma R, et al. Exosomal microRNA-144 from bone marrow-derived mesenchymal stem cells inhibits the progression of non-small cell lung cancer by targeting CCNE1 and CCNE2. Stem Cell Res Ther. 2020;11(1):87. https://doi.org/10.1186/s13287-020-1580-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naseri Z, Oskuee RK, Jaafari MR, Forouzandeh MM. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomed. 2018;13:7727–47. https://doi.org/10.2147/ijn.S182384.

    Article  CAS  Google Scholar 

  19. Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman MA. The regulatory role of micrornas in breast cancer. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194940.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–43. https://doi.org/10.7150/thno.11543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song G, Zhang H, Chen C, Gong L, Chen B, Zhao S, et al. miR-551b regulates epithelial-mesenchymal transition and metastasis of gastric cancer by inhibiting ERBB4 expression. Oncotarget. 2017;8(28):45725–35. https://doi.org/10.18632/oncotarget.17392.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang W, Wang Y, Li W, Shi L, Geng Z. MicroRNA-551b-3p inhibits tumour growth of human cholangiocarcinoma by targeting Cyclin D1. J Cell Mol Med. 2019;23(8):4945–54. https://doi.org/10.1111/jcmm.14312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  24. Naseri Z, Oskuee RK, Forouzandeh-Moghadam M, Jaafari MR. Delivery of LNA-antimiR-142-3p by mesenchymal stem cells-derived exosomes to breast cancer stem cells reduces tumorigenicity. Stem Cell Rev Rep. 2020;16(3):541–56. https://doi.org/10.1007/s12015-019-09944-w.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, et al. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther. 2019;10(1):381. https://doi.org/10.1186/s13287-019-1446-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmad A, Zhang W, Wu M, Tan S, Zhu T. Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes Gen. 2018;40(3):243–51. https://doi.org/10.1007/s13258-017-0624-6.

    Article  CAS  Google Scholar 

  27. Qi L, Sun B, Yang B, Lu S. LINC00665 stimulates breast cancer progression via regulating miR-551b-5p. Cancer Manag Res. 2021;13:1113–21. https://doi.org/10.2147/cmar.S275096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou Y, Liu X, Lan J, Wan Y, Zhu X. Circular RNA circRPPH1 promotes triple-negative breast cancer progression via the miR-556-5p/YAP1 axis. Am J Transl Res. 2020;12(10):6220–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Oltra SS, Peña-Chilet M, Vidal-Tomas V, Flower K, Martinez MT, Alonso E, et al. Methylation deregulation of miRNA promoters identifies miR124–2 as a survival biomarker in breast cancer in very young women. Sci Rep. 2018;8(1):14373. https://doi.org/10.1038/s41598-018-32393-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Zhang Y, Hai J, Wang J, Zhao B, Du L, et al. Knockdown of TRIM31 suppresses proliferation and invasion of gallbladder cancer cells by down-regulating MMP2/9 through the PI3K/Akt signaling pathway. Biomed Pharmacother = Biomed Pharmacother. 2018;103:1272–8. https://doi.org/10.1016/j.biopha.2018.04.120.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Deng Y, Liang L, Shen L, Zhu J, Wang Y, et al. Knockdown of TRIM31 enhances colorectal cancer radiosensitivity by inducing DNA damage and activating apoptosis. Onco Targets Ther. 2019;12:8179–88. https://doi.org/10.2147/ott.S215769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi G, Lv C, Yang Z, Qin T, Sun L, Pan P, et al. TRIM31 promotes proliferation, invasion and migration of glioma cells through Akt signaling pathway. Neoplasma. 2019;66(5):727–35. https://doi.org/10.4149/neo_2019_190106N21.

    Article  CAS  PubMed  Google Scholar 

  33. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wörmann B. Breast cancer: basics, screening, diagnostics and treatment. Med Monatsschr Pharm. 2017;40(2):55–64.

    PubMed  Google Scholar 

  35. Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Can Res. 2016;76(19):5832–44. https://doi.org/10.1158/0008-5472.Can-16-1092.

    Article  CAS  Google Scholar 

  36. Sun HY, Qu ZC, Liu DM, Zhang W, Liu G, Zhu L. Decreased expression of miR-551b predicts poor prognosis and promotes tumorigenesis by targeting PTP4A3 in human colorectal cancer. Eur Rev Med Pharmacol Sci. 2019;23(13):5741–51. https://doi.org/10.26355/eurrev_201907_18311.

    Article  PubMed  Google Scholar 

  37. Lv T, Jiang L, Kong L, Yang J. MicroRNA-29c-3p acts as a tumor suppressor gene and inhibits tumor progression in hepatocellular carcinoma by targeting TRIM31. Oncol Rep. 2020;43(3):953–64. https://doi.org/10.3892/or.2020.7469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L110–21. https://doi.org/10.1152/ajplung.00423.2016.

    Article  PubMed  Google Scholar 

  39. Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5):597–609. https://doi.org/10.1038/s41556-018-0083-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrov VN, Isaeva EV, Ulyanenko SE, Beketov EE, Yatsenko EM, Sayapina EV, et al. In vivo effects of human bone marrow mesenchymal stromal cells on the development of experimental B16 melanoma in mice. Bull Exp Biol Med. 2020;168(4):561–5. https://doi.org/10.1007/s10517-020-04753-5.

    Article  CAS  PubMed  Google Scholar 

  41. Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target. 2020;28(2):129–41. https://doi.org/10.1080/1061186x.2019.1641508.

    Article  CAS  PubMed  Google Scholar 

  42. Kim H, Kim EH, Kwak G, Chi SG, Kim SH, Yang Y. Exosomes: cell-derived nanoplatforms for the delivery of cancer therapeutics. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms22010014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18(1):10. https://doi.org/10.1186/s12951-019-0563-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lou G, Chen L, Xia C, Wang W, Qi J, Li A, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res: CR. 2020;39(1):4. https://doi.org/10.1186/s13046-019-1512-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, et al. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 2019;9(26):8206–20. https://doi.org/10.7150/thno.37455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qin F, Tang H, Zhang Y, Zhang Z, Huang P, Zhu J. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J Cell Physiol. 2020;235(5):4734–45. https://doi.org/10.1002/jcp.29351.

    Article  CAS  PubMed  Google Scholar 

  47. Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, et al. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis. 2020;41(5):666–77. https://doi.org/10.1093/carcin/bgz130.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the Shanghai Pujiang Talent Program (Grant no. 18PJD005).

Author information

Authors and Affiliations

Authors

Contributions

ZY, BX and SW made major contributions to the conception and design of this study, and drafted the manuscript. WY, RL, SG, ZX, WJ, XS, XG and HZ were responsible for data acquisition, analysis and interpretation, and manuscript revision. HW made substantial contributions to the conception and design of the study and revised the manuscript. All authors agreed to be accountable for all aspects of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Both clinical and animal experiments have been approved by the Ethics Committee of the Zhongshan Hospital, Fudan University (No. Y2014-135). Written informed consent was obtained from all participants.

Consent for publication

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_753_MOESM1_ESM.tif

Supplementary file1 Figure. S1 Identification of DEMs in high-grade and low-grade breast cancer tissues. (A, B) Heat maps of DEMs in GSE131599 and TCGA. (C, D) Volcano plot of DEMs in GSE131599 and TCGA. DEMs, differentially expressed miRNAs; TCGA, The Cancer Genome Atlas (TIF 8346 KB)

13577_2022_753_MOESM2_ESM.tif

Supplementary file2 Figure. S2 miR-551b-3p inhibits the proliferation and migration of SK-BR-3 cells. (A) Reverse transcription-quantitative PCR analysis of miR-135a-5p, miR-551b-3p and miR-556-3p expression levels in MCF-10A and MDA-MB-231 cells. (B) SK-BR-3 cells were transfected with miR-551b-3p agomir or miR-551b-3p antagomir. Cell proliferation was detected via EdU staining. (C) Cell migration was measured by using a Transwell migration assay. **P<0.01. miR, microRNA (TIF 7370 KB)

13577_2022_753_MOESM3_ESM.tif

Supplementary file3 Figure. S3 miR-551b-3p inhibits the viability of breast cancer cells via negatively regulating TRIM31. MDA-MB-231 cells were transfected with miR-551b-3p agomir or/and TRIM31 siRNA2. Cell viability was detected via a Cell Counting Kit-8 assay. **P<0.01 (TIF 2196 KB)

13577_2022_753_MOESM4_ESM.tif

Supplementary file4 Figure. S4 Effects of BMSC-Exo on the proliferation and migration of breast cancer cells. (A) RT-qPCR analysis of miR-551b-3p expression levels in BMSCs, MCF-10A and MDA-MB-231 cells. (B) MDA-MB-231 cells were co-cultured with BMSCs. Meanwhile, MDA-MB-231 cells were treated with BMSC-Exo. RT-qPCR analysis of miR-551b-3p and TRIM31 expression levels in MDA-MB-231 cells. (C) Cell proliferation was detected via EdU staining. (D) Cell migration was measured by using a Transwell migration assay. **P<0.01. BMSCs, bone marrow mesenchymal stromal cells; BMSC-Exo, BMSC-derived exosomes; RT-qPCR, reverse transcription-quantitative PCR; miR, microRNA; TRIM31, tripartite motif-containing protein 31 (TIF 13371 KB) 

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xu, B., Wu, S. et al. Exosomal microRNA-551b-3p from bone marrow-derived mesenchymal stromal cells inhibits breast cancer progression via regulating TRIM31/Akt signaling. Human Cell 35, 1797–1812 (2022). https://doi.org/10.1007/s13577-022-00753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00753-x

Keywords

Navigation