Skip to main content
Log in

Transcription factor p8 regulates autophagy in response to disulfiram via PI3K/mTOR/p70S6K signaling pathway in pancreatic cancer cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Disulfiram (DSF), which is an inhibitor of aldehyde dehydrogenase (ALDH) and approved by the FDA for the treatment of alcoholism previously, has been repurposed for use as a cancer treatment because of its potent effect in preclinical studies. In this study, we found that disulfiram forms potent complexes with copper (DSF/Cu) inhibited cell proliferation, induced apoptosis in human pancreatic cancer cells, which was detected by flow cytometry and western blotting. Meanwhile, autophagy and autophagic flux also clearly observed by transmission electron microscopy, confocal microscopy and flow cytometry. Our results also showed that DSF/Cu induced transcription factor p8 upregulation and PI3K/mTOR signaling pathway activation detected by real-time PCR and western blotting. Additionally, suppression of p8 inactivated the mTOR signaling pathway and autophagic flux maintained. Furthermore, mechanism study indicated that autophagy induced by DSF/Cu was regulated by p8 and was related to PI3K/mTOR/p70S6K signaling pathway in pancreatic cancer cells. Our findings provide insights into the role of p8 in regulating autophagy induced by DSF/Cu effects in pancreatic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Assaf E, Verlinde-Carvalho M, Delbaldo C, et al. 5-fluorouracil/leucovorin combined with irinotecan and oxaliplatin (FOLFIRINOX) as second-line chemotherapy in patients with metastatic pancreatic adenocarcinoma. Oncology. 2011;80:301–6.

    Article  CAS  PubMed  Google Scholar 

  3. Lee MG, Lee SH, Lee SJ, et al. 5-Fluorouracil/leucovorin combined with irinotecan and oxaliplatin (FOLFIRINOX) as second-line chemotherapy in patients with advanced pancreatic cancer who have progressed on gemcitabine-based therapy. Chemotherapy. 2013;59:273–9.

    Article  CAS  PubMed  Google Scholar 

  4. Park HS, Kang B, Chon HJ, et al. Liposomal irinotecan plus fluorouracil/leucovorin versus FOLFIRINOX as the second-line chemotherapy for patients with metastatic pancreatic cancer: a multicenter retrospective study of the Korean Cancer Study Group (KCSG). ESMO Open. 2021;6: 100049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006;66:10425–33.

    Article  CAS  PubMed  Google Scholar 

  6. Yip NC, Fombon IS, Liu P, et al. Disulfiram modulated ROS-MAPK and NFkappaB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 2011;104:1564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Li W, Patel SS, et al. Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 2014;5:3743–55.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cong J, Wang Y, Zhang X, et al. A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Lett. 2017;409:9–19.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Hu P, Ding SY, et al. Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am J Cancer Res. 2019;9:1266–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mallo GV, Fiedler F, Calvo EL, et al. Cloning and expression of the rat p8 cDNA, a new gene activated in pancreas during the acute phase of pancreatitis, pancreatic development, and regeneration, and which promotes cellular growth. J Biol Chem. 1997;272:32360–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chowdhury UR, Samant RS, Fodstad O, Shevde LA. Emerging role of nuclear protein 1 (NUPR1) in cancer biology. Cancer Metastasis Rev. 2009;28:225–32.

    Article  CAS  PubMed  Google Scholar 

  12. Ree AH, Pacheco MM, Tvermyr M, Fodstad O, Brentani MM. Expression of a novel factor, com1, in early tumor progression of breast cancer. Clin Cancer Res. 2000;6:1778–83.

    CAS  PubMed  Google Scholar 

  13. Li X, Martin TA, Jiang WG. COM-1/p8 acts as a tumour growth enhancer in colorectal cancer cell lines. Anticancer Res. 2012;32:1229–37.

    CAS  PubMed  Google Scholar 

  14. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001;61:3760–9.

    CAS  PubMed  Google Scholar 

  15. Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito Y, Yoshida H, Motoo Y, et al. Expression of p8 protein in medullary thyroid carcinoma. Anticancer Res. 2005;25:3419–23.

    CAS  PubMed  Google Scholar 

  17. Mohammad HP, Seachrist DD, Quirk CC, Nilson JH. Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone. Mol Endocrinol. 2004;18:2583–93.

    Article  CAS  PubMed  Google Scholar 

  18. Malicet C, Hoffmeister A, Moreno S, et al. Interaction of the stress protein p8 with Jab1 is required for Jab1-dependent p27 nuclear-to-cytoplasm translocation. Biochem Biophys Res Commun. 2006;339:284–9.

    Article  CAS  PubMed  Google Scholar 

  19. Malicet C, Giroux V, Vasseur S, Dagorn JC, Neira JL, Iovanna JL. Regulation of apoptosis by the p8/prothymosin alpha complex. Proc Natl Acad Sci U S A. 2006;103:2671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gironella M, Malicet C, Cano C, et al. p8/nupr1 regulates DNA-repair activity after double-strand gamma irradiation-induced DNA damage. J Cell Physiol. 2009;221:594–602.

    Article  CAS  PubMed  Google Scholar 

  21. Mu Y, Yan X, Li D, et al. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy. 2018;14:654–70.

    Article  CAS  PubMed  Google Scholar 

  22. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Klionsky DJ. The regulation of autophagy - unanswered questions. J Cell Sci. 2011;124:161–70.

    Article  CAS  PubMed  Google Scholar 

  25. Mizumura K, Choi AM, Ryter SW. Emerging role of selective autophagy in human diseases. Front Pharmacol. 2014;5:244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tu C, Li H, Liu X, et al. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Autophagy. 2021;17(11):3848-64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh BN, Kumar D, Shankar S, Srivastava RK. Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol. 2012;84:1154–63.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SM, Vetrivel P, Ha SE, Kim HH, Kim JA, Kim GS. Apigetrin induces extrinsic apoptosis, autophagy and G2/M phase cell cycle arrest through PI3K/AKT/mTOR pathway in AGS human gastric cancer cell. J Nutr Biochem. 2020;83: 108427.

    Article  CAS  PubMed  Google Scholar 

  31. Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552:194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dufour P, Lang JM, Giron C, et al. Sodium dithiocarb as adjuvant immunotherapy for high risk breast cancer: a randomized study. Biotherapy. 1993;6:9–12.

    Article  CAS  PubMed  Google Scholar 

  33. Nechushtan H, Hamamreh Y, Nidal S, et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist. 2015;20:366–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Tan J, McConville C, et al. Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. Nanomedicine. 2017;13:641–57.

    Article  CAS  PubMed  Google Scholar 

  35. Schweizer MT, Lin J, Blackford A, et al. Pharmacodynamic study of disulfiram in men with non-metastatic recurrent prostate cancer. Prostate Cancer Prostatic Dis. 2013;16:357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang J, Chaudhary R, Cohen AL, et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019;142:537–44.

    Article  CAS  PubMed  Google Scholar 

  37. Lun X, Wells JC, Grinshtein N, et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin Cancer Res. 2016;22:3860–75.

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523–40.

    Article  CAS  PubMed  Google Scholar 

  39. Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol. 2014;205:435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17:596–603.

    Article  CAS  PubMed  Google Scholar 

  41. Jia SN, Lin C, Chen DF, et al. The Transcription factor p8 regulates autophagy in response to palmitic acid stress via a Mammalian Target of Rapamycin (mTOR)-independent signaling pathway. J Biol Chem. 2016;291:4462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872426, X. Z.) and Natural Science Foundation of Jiangsu Province, China (BK20181372, X.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Li, X., Gao, J. et al. Transcription factor p8 regulates autophagy in response to disulfiram via PI3K/mTOR/p70S6K signaling pathway in pancreatic cancer cells. Human Cell 35, 1464–1474 (2022). https://doi.org/10.1007/s13577-022-00731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00731-3

Keywords

Navigation