Skip to main content

Advertisement

Log in

Establishment and characterization of a novel patient-derived Ewing sarcoma cell line, NCC-ES2-C1

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ewing sarcoma (ES) is a small round cell sarcoma that is characterized by the unique gene translocation EWSR1–FLI1. It is the second most common primary bone and soft tissue malignancy in children and adolescents. It constitutes 10–15% of all bone sarcomas and is highly aggressive and rapidly recurring. Although intensive treatments have improved the clinical outcome of ES patients, 20–25% of them exhibit metastases during diagnosis. Thus, the prognoses of these patients remain poor. Cell lines are pivotal resources to investigate the molecular background of disease progression and to develop novel therapeutic modalities. In this study, we established and characterized a novel ES cell line, NCC-ES2-C1. The presence of the EWSR1–FLI1 fusion gene in these cells was confirmed in the NCC-ES2-C1 cells. Furthermore, these cells exhibited constant proliferation, and invasion, but did not form tumors in mice. We screened the anti-tumor effects of 214 anti-cancer drugs in NCC-ES2-C1 cells and found that the drugs which effectively reduced the proliferation of NCC-ES2-C1 cells. We concluded that NCC-ES2-C1 cells are a useful resource to study functions of the EWSR1–FLI1 fusion gene, investigate phenotypic changes caused by genes and proteins, and evaluate the anti-tumor effects of novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Gaspar N, Hawkins DS, Dirksen U, et al. Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol. 2015;33:3036–46.

    Article  CAS  PubMed  Google Scholar 

  3. Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018;4:5.

    Article  PubMed  Google Scholar 

  4. WHO Classification of Tumours of Soft Tissue and Bone, 2020.

  5. Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  6. Staege MS, Hutter C, Neumann I, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res. 2004;64:8213–21.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Jiang W, Yan Y, et al. Knockdown of EWSR1/FLI1 expression alters the transcriptome of Ewing sarcoma cells in vitro. J Bone Oncol. 2016;5:153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bailly RA, Bosselut R, Zucman J, et al. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994;14:3230–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwentner R, Papamarkou T, Kauer MO, et al. EWS-FLI1 employs an E2F switch to drive target gene expression. Nucleic Acids Res. 2015;43:2780–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kovar H. Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy. Expert Opin Ther Targets. 2014;18:1315–28.

    Article  CAS  PubMed  Google Scholar 

  11. Cervera ST, Rodríguez-Martín C, Fernández-Tabanera E, et al. Therapeutic potential of EWSR1-FLI1 inactivation by CRISPR/Cas9 in Ewing sarcoma. Cancers. 2021;13:3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tancredi R, Zambelli A, DaPrada GA, et al. Targeting the EWS-FLI1 transcription factor in Ewing sarcoma. Cancer Chemother Pharmacol. 2015;75:1317–20.

    Article  CAS  PubMed  Google Scholar 

  13. Harlow ML, Maloney N, Roland J, et al. Lurbinectedin inactivates the Ewing sarcoma oncoprotein EWS-FLI1 by redistributing it within the nucleus. Cancer Res. 2016;76:6657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grohar PJ, Woldemichael GM, Griffin LB, et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst. 2011;103:962–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osgood CL, Maloney N, Kidd CG, et al. Identification of mithramycin analogues with improved targeting of the EWS-FLI1 transcription factor. Clin Cancer Res. 2016;22:4105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barber-Rotenberg JS, Selvanathan SP, Kong Y, et al. Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS-FLI1. Oncotarget. 2012;3:172–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Erkizan HV, Kong Y, Merchant M, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grohar PJ, Glod J, Peer CJ, et al. A phase I/II trial and pharmacokinetic study of mithramycin in children and adults with refractory Ewing sarcoma and EWS-FLI1 fusion transcript. Cancer Chemother Pharmacol. 2017;80:645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uren A, Toretsky JA. Ewing’s sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol. 2005;1:521–8.

    Article  CAS  PubMed  Google Scholar 

  20. Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:4148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Basu A, Bodycombe NE, Cheah JH, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 2015;5:1210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rees MG, Seashore-Ludlow B, Cheah JH, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12:109–16.

    Article  CAS  PubMed  Google Scholar 

  26. Haverty PM, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature. 2016;533:333–7.

    Article  CAS  PubMed  Google Scholar 

  27. Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166:740–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511–6.

    Article  CAS  PubMed  Google Scholar 

  29. Townsend EC, Murakami MA, Christodoulou A, et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016;29:574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bairoch A. The Cellosaurus: a cell line knowledge resource.

  31. Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-CDS2-C1: a novel patient-derived cell line of CIC-DUX4 sarcoma. Hum Cell. 2020;33:427–36.

    Article  PubMed  Google Scholar 

  32. Bairoch A. The Cellosaurus, a cell-Line knowledge resource. J Biomol Tech. 2018;29:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oyama R, Kito F, Qiao Z, et al. Establishment of a novel patient-derived Ewing’s sarcoma cell line, NCC-ES1-C1. In Vitro Cell Dev Biol Anim. 2018;54:770–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011;11:239–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mujtaba T, Dou QP. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med. 2011;12:471–80.

    PubMed  PubMed Central  Google Scholar 

  36. Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8:508–13.

    Article  PubMed  Google Scholar 

  37. Kane RC, Farrell AT, Sridhara R, Pazdur R. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res. 2006;12:2955–60.

    Article  CAS  PubMed  Google Scholar 

  38. Kane RC, Dagher R, Farrell A, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13:5291–4.

    Article  CAS  PubMed  Google Scholar 

  39. Coiffier B, Pro B, Prince HM, et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014;7:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot. 2011;64:525–31.

    Article  CAS  Google Scholar 

  41. Shukla N, Somwar R, Smith RS, et al. Proteasome addiction defined in Ewing sarcoma is effectively targeted by a novel class of 19S proteasome inhibitors. Cancer Res. 2016;76:4525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maki RG, Kraft AS, Scheu K, et al. A multicenter Phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer. 2005;103:1431–8.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt O, Nehls N, Prexler C, et al. Class I histone deacetylases (HDAC) critically contribute to Ewing sarcoma pathogenesis. J Exp Clin Cancer Res. 2021;40:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts I, Wienberg J, Nacheva E, Grace C, Griffin D, Coleman N. Novel method for the production of multiple colour chromosome paints for use in karyotyping by fluorescence in situ hybridisation. Genes Chromosomes Cancer. 1999;25:241–50.

    Article  CAS  PubMed  Google Scholar 

  45. Martínez-Ramírez A, Rodríguez-Perales S, Meléndez B, et al. Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques. Cancer Genet Cytogenet. 2003;141:138–42.

    Article  PubMed  Google Scholar 

  46. Coleman N, Roberts I. Re: characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques. Cancer Genet Cytogenet. 2004;148:86.

    Article  PubMed  Google Scholar 

  47. Smith MA, Morton CL, Phelps D, Girtman K, Neale G, Houghton PJ. SK-NEP-1 and Rh1 are Ewing family tumor lines. Pediatr Blood Cancer. 2008;50:703–6.

    Article  PubMed  Google Scholar 

  48. Masters JR, Thomson JA, Daly-Burns B, et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci U S A. 2001;98:8012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Tochigi Cancer Center operating room’s nurse team and the secretary of the Medical Office for their assistance in processing and transporting the samples. We also appreciate the technical assistance provided by Mrs. Y. Kuwata (Division of Rare Cancer Research) and Mr. T. Kondo (Hokkaido University Medical School). We would like to thank Editage (www.editage.jp) for providing English language editing services and for their constructive comments on this manuscript. This study was technically supported by the Fundamental Innovative Oncology Core of the National Cancer Center.

Funding

This research was supported by the Japan Agency for Medical Research and Development (Grant number: 20ck0106537h0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kondo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The ethical committees of the Tochigi Cancer Center and the National Cancer Center approved the use of clinical materials for this study.

Informed consent

Written informed consent for publication was provided by the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_701_MOESM1_ESM.tif

Supplementary file1 Supplementary Fig. 1. Short tandem repeat patterns in the NCC-ES2-C1 cell line and the original tumor tissue. (A) Short tandem repeat patterns in NCC-ES2-C1 cells. (B) Short tandem repeat patterns in the original tumor tissue. (TIF 257 KB)

Supplementary file2 Supplementary Table 1. List of the anti-cancer drugs used in this study. (XLSX 22 KB)

13577_2022_701_MOESM3_ESM.xlsx

Supplementary file3 Supplementary Table 2. Viability (%) of NCC-ES2-C1 cells after treatment with 214 anti-cancer drugs (XLSX 26 KB)

13577_2022_701_MOESM4_ESM.xlsx

Supplementary file4 Supplementary Table 3. List of Ewing sarcoma cell lines recorded in the cell line database Cellosaurus (XLSX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimatsu, Y., Noguchi, R., Sin, Y. et al. Establishment and characterization of a novel patient-derived Ewing sarcoma cell line, NCC-ES2-C1. Human Cell 35, 1262–1269 (2022). https://doi.org/10.1007/s13577-022-00701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00701-9

Keywords

Navigation