Skip to main content
Log in

Circular RNA circRNA_0000094 sponges microRNA-223-3p and up-regulate F-box and WD repeat domain containing 7 to restrain T cell acute lymphoblastic leukemia progression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

A Correction to this article was published on 06 July 2021

This article has been updated

Abstract

Circular RNAs (circRNAs) exert crucial regulatory effects in the pathogenesis of multiple tumors. This work aimed to probe into the role of circ_0000094 in T cell acute lymphoblastic leukemia (T-ALL). In this work, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to quantify circ_0000094, miR-223-3p, and F-box and WD repeat domain containing 7 (FBW7) mRNA expressions in lymph node samples from T-ALL patients; Western blot was adopted to examine FBW7 protein expression in T-ALL cells; cell proliferation was detected by cell counting kit-8 (CCK-8) experiment; apoptosis was examined by flow cytometry; Transwell experiments were applied to assess T-ALL cell migration and invasion; the interactions among circ_0000094 and miR-223-3p, and miR-223-3p and FBW7 were validated by bioinformatics prediction, dual-luciferase reporter gene assay, and RNA immunoprecipitation experiment. We reported that, circ_0000094 expression was markedly reduced in T-ALL and circ_0000094 was predominantly located in the cytoplasm; gain-of-function and loss-of-function assays verified that circ_0000094 overexpression remarkably suppressed T-ALL cell proliferation, migration, and invasion, and enhanced apoptosis while knocking down circ_0000094 enhanced the malignant phenotypes of T-ALL cells; “rescue experiments” implied that miR-223-3p mimics partly reversed the inhibitory effects on the malignant phenotype of T-ALL cells due to the circ_0000094 up-regulation; circ_0000094 was proved to be a molecular sponge for miR-223-3p, and it could up-regulate the expression of FBW7 via repressing miR-223-3p expression. Taken together, it was concluded that circ_0000094 impedes T-ALL progression by modulating the miR-223-3p/FBW7 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Change history

References

  1. Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The physiopathology of T- cell acute lymphoblastic leukemia: focus on molecular aspects. Front Oncol. 2020;10:273.

    Article  Google Scholar 

  2. Wallaert A, Durinck K, Taghon T, Van Vlierberghe P, Speleman F. T-ALL and thymocytes: a message of noncoding RNAs. J Hematol Oncol. 2017;10(1):66.

    Article  Google Scholar 

  3. Liu Q, Ma H, Sun X, Liu B, Xiao Y, Pan S, Zhou H, Dong W, Jia L. The regulatory ZFAS1/miR-150/ST6GAL1 crosstalk modulates sialylation of EGFR via PI3K/Akt pathway in T-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res: CR. 2019;38(1):199.

    Article  Google Scholar 

  4. Mumtaz PT, Taban Q, Dar MA, Mir S, Haq ZU, Zargar SM, Shah RA, Ahmad SM. Deep insights in circular RNAs: from biogenesis to therapeutics. Biol Procedures Online. 2020;22:10.

    Article  CAS  Google Scholar 

  5. Bian L, Zhi X, Ma L, Zhang J, Chen P, Sun S, Li J, Sun Y, Qin J. Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p / FOXO4 axis. Biochem Biophys Res Commun. 2018;505(2):346–52.

    Article  CAS  Google Scholar 

  6. Bach DH, Lee SK, Sood AK. Circular RNAs in Cancer. Mol Therapy Nucleic Acids. 2019;16:118–29.

    Article  CAS  Google Scholar 

  7. Li S, Weng J, Song F, Li L, Xiao C, Yang W, Xu J. Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression. Cell Death Dis. 2020;11(6):452.

    Article  CAS  Google Scholar 

  8. Liu J, Dai X, Guo X, Cheng A, Mac SM, Wang Z. Circ-OXCT1 suppresses gastric cancer EMT and metastasis by attenuating TGF-β pathway through the Circ-OXCT1/miR-136/SMAD4 Axis. OncoTargets Therapy. 2020;13:3987–98.

    Article  CAS  Google Scholar 

  9. Shangguan H, Feng H, Lv D, Wang J, Tian T, Wang X. Circular RNA circSLC25A16 contributes to the glycolysis of non-small-cell lung cancer through epigenetic modification. Cell Death Dis. 2020;11(6):437.

    Article  CAS  Google Scholar 

  10. Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA. GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. Biochim Biophys Acta Mol Cell Res 2020:118770.

  11. Wang J, Jin Y, Li S, Song Q, Tang P. Identification of microRNAs associated with the survival of patients with gallbladder carcinoma. J Int Med Res. 2020;48(5):300060520918061.

    CAS  PubMed  Google Scholar 

  12. Ding Q, He K, Luo T, Deng Y, Wang H, Liu H, Zhang J, Chen K, Xiao J, Duan X, et al. SSRP1 contributes to the malignancy of hepatocellular carcinoma and is negatively regulated by miR-497. MolTher: J Am Soc Gene Therapy. 2016;24(5):903–14.

    CAS  Google Scholar 

  13. Wei L, Sun C, Zhang Y, Han N, Sun S. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther. 2020. https://doi.org/10.1038/s41434-020-0167-3.

    Article  PubMed  Google Scholar 

  14. Chai B, Guo Y, Cui X, Liu J, Suo Y, Dou Z, Li N. MiR-223-3p promotes the proliferation, invasion and migration of colon cancer cells by negative regulating PRDM1. Am J Trans Res. 2019;11(7):4516–23.

    CAS  Google Scholar 

  15. Wei Y, Yang J, Yi L, Wang Y, Dong Z, Liu Z, Ou-yang S, Wu H, Zhong Z, Yin Z, et al. MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer. Sci Rep. 2014;4:7546.

    Article  CAS  Google Scholar 

  16. Shu Y, Wang Y, Lv WQ, Peng DY, Li J, Zhang H, Jiang GJ, Yang BJ, Liu S, Zhang J, et al. ARRB1-promoted NOTCH1 degradation is suppressed by OncomiRmiR-223 in T-cell acute lymphoblastic leukemia. Can Res. 2020;80(5):988–98.

    Article  CAS  Google Scholar 

  17. Nwogu N, Ortiz LE, Kwun HJ. Surface charge of Merkel cell polyomavirus small T antigen determines cell transformation through allosteric FBW7 WD40 domain targeting. Oncogenesis. 2020;9(5):53.

    Article  CAS  Google Scholar 

  18. Cao J, Ge MH, Ling ZQ. Fbxw7 tumor suppressor: a vital regulator contributes to human tumorigenesis. Medicine. 2016;95(7):e2496.

    Article  CAS  Google Scholar 

  19. Wang L, Ye X, Liu Y, Wei W, Wang Z. Aberrant regulation of FBW7 in cancer. Oncotarget. 2014;5(8):2000–15.

    Article  Google Scholar 

  20. Zhu Q, Hu L, Guo Y, Xiao Z, Xu Q, Tong X. FBW7 in hematological tumors. Oncol Lett. 2020;19(3):1657–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 2011;471(7336):104–9.

    Article  CAS  Google Scholar 

  22. Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX, Yang L. Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother Biomed Pharmacother. 2019;112:108611.

    Article  CAS  Google Scholar 

  23. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73(11):3852–6.

    Article  CAS  Google Scholar 

  24. Sheng JP, Wang LQ, Han YJ, Chen WS, Liu H. Dual roles of protein as a template and a sulfur provider: a general approach to metal sulfides for efficient photothermal therapy of cancer. Small. 2018;14(1):1702529.

    Article  Google Scholar 

  25. Li J, Huang C, Zou Y, Ye J, Yu J, Gui Y. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol Cancer. 2020;19(1):103.

    Article  CAS  Google Scholar 

  26. Xiao W, Zheng S, Zou Y, Yang A, Xie X, Tang H, Xie X. CircAHNAK1 inhibits proliferation and metastasis of triple-negative breast cancer by modulating miR-421 and RASA1. Aging. 2019;11(24):12043–56.

    Article  CAS  Google Scholar 

  27. Sun JW, Qiu S, Yang JY, Chen X, Li HX. Hsa_circ_0124055 and hsa_circ_0101622 regulate proliferation and apoptosis in thyroid cancer and serve as prognostic and diagnostic indicators. Eur Rev Med Pharmacol Sci. 2020;24(8):4348–60.

    PubMed  Google Scholar 

  28. Chen S, Xu M, Zhao J, Shen J, Li J, Liu Y, Cao G, Ma J, He W, Chen X, et al. MicroRNA-4516 suppresses pancreatic cancer development via negatively regulating orthodenticle homeobox 1. Int J Biol Sci. 2020;16(12):2159–69.

    Article  CAS  Google Scholar 

  29. Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ, et al. miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. MolTher: J Am Soc Gene Ther. 2018;26(5):1299–312.

    CAS  Google Scholar 

  30. Ma YL, Wang CY, Guan YJ, Gao FM. Long noncoding RNA ROR promotes proliferation and invasion of colorectal cancer by inhibiting tumor suppressor gene NF2 through interacting with miR-223-3p. Eur Rev Med Pharmacol Sci. 2020;24(5):2401–11.

    PubMed  Google Scholar 

  31. Zhu Y, Li K, Yan L, He Y, Wang L, Sheng L. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim Biophys Sin. 2020;52(2):150–9.

    Article  CAS  Google Scholar 

  32. Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28(12):2324–35.

    Article  CAS  Google Scholar 

  33. Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, et al. CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res. 2018;46(D1):D925-d929.

    Article  CAS  Google Scholar 

  34. Chen D, Ma W, Ke Z, Xie F. CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle (Georgetown, Tex). 2018;17(16):2080–90.

    Article  CAS  Google Scholar 

  35. Song T, Xu A, Zhang Z, Gao F, Zhao L, Chen X, Gao J, Kong X. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075. J Cell Physiol. 2019;234(8):14296–305.

    Article  CAS  Google Scholar 

  36. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumor suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8(2):83–93.

    Article  CAS  Google Scholar 

  37. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18(21):2573–80.

    Article  CAS  Google Scholar 

  38. Mukherjee N, Skees J, Todd KJ, West DA, Lambert KA, Robinson WA, Amato CM, Couts KL, Van Gullick R, MacBeth M, et al. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Cell Death Dis. 2020;11(6):443.

    Article  CAS  Google Scholar 

  39. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science (New York, NY). 2005;307(5712):1101–4.

    Article  CAS  Google Scholar 

  40. Klanova M, Klener P. BCL-2 proteins in pathogenesis and therapy of B-Cell non-hodgkin lymphomas. Cancers 2020, 12(4).

  41. Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J, Zhu JS. miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget. 2016;7(23):35284–92.

    Article  Google Scholar 

  42. Spruck C. miR-27a regulation of SCF(Fbw7) in cell division control and cancer. Cell cycle (Georgetown, Tex). 2011;10(19):3232–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hubei Yican Health Industry Co., Ltd. (Wuhan, China) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhu or Dongchi Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical standards

This study was approved by the Ethics Committee of Xiangyang Central Hospital (Approval number: XYCH201801C03).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2021_504_MOESM1_ESM.tif

Supplementary file1 (TIF 116 KB) Figure 1 (A-B) The T-ALL cells were treated with various concentrations of gamma-secretase inhibitors (GSIs) for 48 h. Then the viability of T-ALL cells was detected by CCK-8 assay. CCK-8, cell counting kit-8. All experiments were performed in triplicate. *** P < 0.001

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Sun, J., Huang, J. et al. Circular RNA circRNA_0000094 sponges microRNA-223-3p and up-regulate F-box and WD repeat domain containing 7 to restrain T cell acute lymphoblastic leukemia progression. Human Cell 34, 977–989 (2021). https://doi.org/10.1007/s13577-021-00504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00504-4

Keywords

Navigation