Skip to main content

Advertisement

Log in

ERO1α mediates endoplasmic reticulum stress-induced apoptosis via microRNA-101/EZH2 axis in colon cancer RKO and HT-29 cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Although colon cancer is a leading and typical gastrointestinal tumor, there is little published data on the underlying molecular mechanisms of endoplasmic reticulum (ER) stress. Here, we investigated the role of ERO1α and its impact on microRNA (miR)-101 expression and ER stress in colon cancer cells. Cell ER stress was established by treating RKO or HT-29 cells with 1 μM thapsigargin (THG). Cell biological behaviors were detected using CCK-8, bromodeoxyuridine assay, flow cytometry and western blot. We also investigated the expression of ERO1α and miR-101 after THG treatment using RT-qPCR. Moreover, effects of ERO1α and miR-101 on ER stress of colon cancer cells were detected. Additionally, miR-101 impact on EZH2 expression and relevance of this regulation was confirmed by RT-qPCR and luciferase reporter. The regulation of miR-101/EZH2 axis and Wnt/β-catenin pathway in ER stress were investigated. Our results demonstrated that THG induced ER stress in colon cancer cells. Silencing ERO1α further promoted ER stress-induced cell apoptosis. ERO1α knockdown up-regulated miR-101 expression and promoted colon cancer cell apoptosis via regulating miR-101. Surprisingly, miR-101 negatively regulated EZH2 expression via miRNA-mRNA targeting. Moreover, ER stress promoted colon cancer cell apoptosis via regulating miR-101/EZH2 axis. Wnt/β-catenin pathway was also involved in the regulation of ERO1α/miR-101/EZH2 in ER stress of colon cancer cells. These findings illustrated that silencing ERO1α regulated ER stress-induced apoptosis via miR-101/EZH2 axis in RKO and HT-29 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Labianca R, Beretta GD, Kildani B, et al. Colon cancer. Critical Rev Oncol/Hematol. 2010;74:106–33.

    Article  Google Scholar 

  2. Banerjee A, Pathak S, Subramanium VD, Dharanivasan G, Murugesan R, Verma RS. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discovery Today. 2017;22:1224–32.

    Article  CAS  PubMed  Google Scholar 

  3. Liu F, Tong T, Huang D, et al. CapeOX perioperative chemotherapy versus postoperative chemotherapy for locally advanced resectable colon cancer: protocol for a two-period randomised controlled phase III trial. BMJ open. 2019;9:e017637.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Freeman HJ. Early stage colon cancer. World J Gastroenterol. 2013;19:8468–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res: CR. 2011;30:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huerta S, Goulet EJ, Livingston EH. Colon cancer and apoptosis. Am J Surg. 2006;191:517–26.

    Article  CAS  PubMed  Google Scholar 

  7. Lin T, Lee JE, Kang JW, Shin HY, Lee JB, Jin DI. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in mammalian oocyte maturation and preimplantation embryo development. Int J Mol Sci. 2019; 20.

  8. Song S, Tan J, Miao Y, Li M, Zhang Q. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017;232:2977–84.

    Article  CAS  PubMed  Google Scholar 

  9. Takei N, Yoneda A, Kosaka M, Sakai-Sawada K, Tamura Y. ERO1α is a novel endogenous marker of hypoxia in human cancer cell lines. BMC cancer. 2019;19:510.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takei N, Yoneda A, Sakai-Sawada K, Kosaka M, Minomi K, Tamura Y. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Sci Rep. 2017;7:9389.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7.

    Article  CAS  PubMed  Google Scholar 

  12. Guo J, Yang Z, Yang X, Li T, Liu M, Tang H. miR-346 functions as a pro-survival factor under ER stress by activating mitophagy. Cancer Lett. 2018;413:69–81.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Wu S, Muhammad S, Ren Q, Sun C. miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes. J Lipid Res. 2018;59:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maurel M, Chevet E. Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol. 2013;304:C1117–26.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 2013;23:547–55.

    Article  CAS  PubMed  Google Scholar 

  16. Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nature Commun. 2016;7:12864.

    Article  CAS  Google Scholar 

  17. Nolan K, Walter F, Tuffy LP, et al. Endoplasmic reticulum stress-mediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis. Eur J Neurosci. 2016;43:640–52.

    Article  PubMed  Google Scholar 

  18. Zou Y, Jiang Z, Yu X, et al. MiR-101 regulates apoptosis of trophoblast HTR-8/SVneo cells by targeting endoplasmic reticulum (ER) protein 44 during preeclampsia. J Hum Hypertens. 2014;28:610–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng H, Taussig DP, Cheng WH, Johnson LK, Hakkak R. Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutrients. 2017; 9.

  20. Kuriyama S, Tsuji T, Sakuma T, Yamamoto T, Tanaka M. PLEKHN1 promotes apoptosis by enhancing Bax-Bak hetro-oligomerization through interaction with Bid in human colon cancer. Cell Death Discovery. 2018;4:11.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wright J, Birk J, Haataja L, et al. Endoplasmic reticulum oxidoreductin-1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem. 2013;288:31010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen LG, Xia YJ, Cui Y. Upregulation of miR-101 enhances the cytotoxic effect of anticancer drugs through inhibition of colon cancer cell proliferation. Oncol Rep. 2017;38:100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandramouli A, Onyeagucha BC, Mercado-Pimentel ME, et al. MicroRNA-101 (miR-101) post-transcriptionally regulates the expression of EP4 receptor in colon cancers. Cancer Biol Ther. 2012;13:175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rastgoo N, Pourabdollah M, Abdi J, Reece D, Chang H. Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia. 2018;32:2471–82.

    Article  CAS  PubMed  Google Scholar 

  25. Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017;29:375–81.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Yang L, Zhong C, Zhou L. EZH2 regulates H2B phosphorylation and elevates colon cancer cell autophagy. J Cell Physiol. 2020;235:1494–503.

    Article  CAS  PubMed  Google Scholar 

  27. Fussbroich B, Wagener N, Macher-Goeppinger S, et al. EZH2 depletion blocks the proliferation of colon cancer cells. PLoS ONE. 2011;6:e21651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu L, Huang X, Kuang Y, Xing Z, Deng X, Luo Z. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: an in vitro and in vivo study. Drug Design, Dev Therapy. 2019;13:2787–98.

    Article  CAS  Google Scholar 

  29. Morishima N, Nakanishi K, Tsuchiya K, Shibata T, Seiwa E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem. 2004;279:50375–81.

    Article  CAS  PubMed  Google Scholar 

  30. Blais JD, Chin KT, Zito E, et al. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem. 2010;285:20993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fisher AMR, Natalie R, Sam W, Gomer CJ (1998) Differential photosensitivity in wild-type and mutant p53 human colon carcinoma cell lines. J Photochem Photobiol B: Biol 42(2):104–107

  32. Lengyel E, Wang H, Gum R, Simon C, Wang Y, Boyd D (1997) Elevated urokinase-type plasminogen activator receptor expression in a colon cancer cell line is due to a constitutively activated extracellular signal-regulated kinase-1-dependent signaling cascade. Oncogene 14(21):2563–2573

  33. Nakayama M, Oshima M (2019) Mutant p53 in colon cancer. J Molec Cell Biol 11(4):267–276

    Article  CAS  Google Scholar 

  34. Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson ALB, Hamilton SR (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. New England J Med 344(16):1196–1206

  35. Russo P, Malacarne D, Falugi C, Trombino S, O'Connor PM (2002) RPR-115135, a farnesyltransferase inhibitor, increases 5-FU-cytotoxicity in ten human colon cancer cell lines: Role of p53. Int J Cancer 100(3):266–275

  36. Lee J, Lee I, Han B, Park JO, Jang J, Park C, Kang WK (2011) Effect of simvastatin on cetuximab resistance in human colorectal cancer With KRAS mutations. JNCI: J Nat Cancer Ins 103(8):674–688

  37. Zhu L, Chen Y, Nie K, Xiao Y, Yu H. MiR-101 inhibits cell proliferation and invasion of pancreatic cancer through targeting STMN1. Cancer Biomarkers: Section A Disease Markers. 2018;23:301–9.

    Article  CAS  Google Scholar 

  38. Bao J, Xu Y, Wang Q, et al. miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed Pharmacother Biomed Pharmacother. 2017;92:1030–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wei H, He WR, Chen KM, Wang XW, Yi CJ. MiR-101 affects proliferation and apoptosis of cervical cancer cells by inhibition of JAK2. Eur Rev Med Pharmacol Sci. 2019;23:5640–7.

    CAS  PubMed  Google Scholar 

  40. Liu J, Fan L, Yu H, et al. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology (Baltimore, MD). 2019;70:241–58.

    CAS  Google Scholar 

  41. Sun Y, Zhang D, Liu X, et al. Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cellular Physiol Biochem: Int J Exp Cellular Physiol, Biochem Pharmacol. 2018;48:1995–2010.

    Article  CAS  Google Scholar 

  42. Wang C, Liu B. miR-101-3p induces autophagy in endometrial carcinoma cells by targeting EZH2. Arch Gynecol Obstet. 2018;297:1539–48.

    Article  CAS  PubMed  Google Scholar 

  43. Hsieh YY, Lo HL, Yang PM. EZH2 inhibitors transcriptionally upregulate cytotoxic autophagy and cytoprotective unfolded protein response in human colorectal cancer cells. Am J Cancer Res. 2016;6:1661–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu YL, Gao X, Jiang Y, et al. Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer. J Cancer Res Clin Oncol. 2015;141:661–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bremer SCB, Conradi LC, Mechie NC, et al. Enhancer of Zeste homolog 2 in colorectal cancer development and progression. Digestion. 2019:1–9.

  46. Bohm J, Muenzner JK, Caliskan A, et al. Loss of enhancer of zeste homologue 2 (EZH2) at tumor invasion front is correlated with higher aggressiveness in colorectal cancer cells. J Cancer Res Clin Oncol. 2019;145:2227–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pak S, Park S, Kim Y, et al. The small molecule WNT/β-catenin inhibitor CWP232291 blocks the growth of castration-resistant prostate cancer by activating the endoplasmic reticulum stress pathway. J Exp Clin Cancer Res: CR. 2019;38:342.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sebio A, Kahn M, Lenz HJ. The potential of targeting Wnt/β-catenin in colon cancer. Expert Opinion Therapeutic Targets. 2014;18:611–5.

    Article  CAS  Google Scholar 

  49. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  50. Chen L, Wu Y, Wu Y, Wang Y, Sun L, Li F. The inhibition of EZH2 ameliorates osteoarthritis development through the Wnt/β-catenin pathway. Sci Rep. 2016;6:29176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlan Chen.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 5092 KB)

Supplementary file2 (TIF 279 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Han, J., Wang, G. et al. ERO1α mediates endoplasmic reticulum stress-induced apoptosis via microRNA-101/EZH2 axis in colon cancer RKO and HT-29 cells. Human Cell 34, 932–944 (2021). https://doi.org/10.1007/s13577-021-00494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00494-3

Keywords

Navigation