Skip to main content
Log in

Chemopreventive effects of nanoparticle curcumin in a mouse model of Pten-deficient prostate cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The present study investigated the antitumor activity and chemopreventive effects of a nanoparticle formulation of curcumin in preclinical models of mouse Pten-deficient prostate cancer. The antitumor activity of the nanoparticle curcumin was evaluated in mouse castration-naïve (7113-D3) and castration-resistant prostate cancer (2945-E10) derived cell lines in vitro. Cell viability was reduced in both cell lines in a dose and time-dependent manner. The effects of long-term dietary supplementation with the nanoparticle curcumin formulation were evaluated in a conditional Pten-deficient mouse model. Prostate tissues from Pten-deficient prostate cancers were obtained after sixteen weeks of dietary supplementation of 76 mg/kg/day or 380 mg/kg/day nanoparticle curcumin. Daily supplementation of nanoparticle curcumin did not affect mouse bodyweights or spleen size but did result in enlargement of the liver. Dietary supplementation did not influence tumor burden, however, mice fed high-dose curcumin had lower cancer cell proliferation rates at 12 and 16 weeks of age. Together, these results show that daily supplementation of a nanoparticle formulation of curcumin is tolerable and suggest that curcumin could have chemopreventive activity in early-stage prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. CANCER STATISTICS IN JAPAN CfCCaIS, National Cancer Center: Latest cancer statistics in Japan. 2018.

  2. Namiki M, Akaza H, Lee SE, Song JM, Umbas R, Zhou L, Lee BC, Cheng C, Chung MK, Fukagai T, et al. Prostate Cancer Working Group report. Jpn J Clin Oncol. 2010;40(Suppl 1):i70–75.

    Article  Google Scholar 

  3. Frattaroli J, Weidner G, Dnistrian AM, Kemp C, Daubenmier JJ, Marlin RO, Crutchfield L, Yglecias L, Carroll PR, Ornish D. Clinical events in prostate cancer lifestyle trial: results from two years of follow-up. Urology. 2008;72:1319–23.

    Article  Google Scholar 

  4. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32:1053–64.

    Article  CAS  Google Scholar 

  5. Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, Hama T, Masuda H, Horie S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate. 2010;70:1127–33.

    Article  CAS  Google Scholar 

  6. Ide H, Lu Y, Noguchi T, Muto S, Okada H, Kawato S, Horie S. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Sci. 2018;109:1230–8.

    Article  CAS  Google Scholar 

  7. Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, Wada H, Katanasaka Y, Kakeya H, Fujita M, et al. Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull. 2011;34:660–5.

    Article  CAS  Google Scholar 

  8. De Velasco MA, Uemura H. Preclinical remodeling of human prostate cancer through the PTEN/AKT pathway. Adv Urol. 2012;2012:419348.

    Article  Google Scholar 

  9. Koike H, Nozawa M, De Velasco MA, Kura Y, Ando N, Fukushima E, Yamamoto Y, Hatanaka Y, Yoshikawa K, Nishio K, Uemura H. Conditional PTEN-deficient mice as a prostate cancer chemoprevention model. Asian Pac J Cancer Prev. 2015;16:1827–31.

    Article  Google Scholar 

  10. De Velasco MA, Tanaka M, Yamamoto Y, Hatanaka Y, Koike H, Nishio K, Yoshikawa K, Uemura H. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer. Carcinogenesis. 2014;35:2142–53.

    Article  Google Scholar 

  11. De VelascoKura MAY, Sakai K, Hatanaka Y, Davies BR, Campbell H, Klein S, Kim Y, MacLeod AR, Sugimoto K, et al. Targeting castration-resistant prostate cancer with androgen receptor antisense oligonucleotide therapy. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.122688.

    Article  Google Scholar 

  12. Nasseri E, Mohammadi E, Tamaddoni A, Qujeq D, Zayeri F, Zand H. Benefits of curcumin supplementation on antioxidant status in beta-thalassemia major patients: a double-blind randomized controlled clinical trial. Ann Nutr Metab. 2017;71:136–44.

    Article  CAS  Google Scholar 

  13. Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018;15:11–24.

    Article  Google Scholar 

  14. Horie S. Chemoprevention of prostate cancer: soy isoflavones and curcumin. Korean J Urol. 2012;53:665–72.

    Article  Google Scholar 

  15. Ide H, Yu J, Lu Y, China T, Kumamoto T, Koseki T, Muto S, Horie S. Testosterone augments polyphenol-induced DNA damage response in prostate cancer cell line. LNCaP Cancer Sci. 2011;102:468–71.

    Article  CAS  Google Scholar 

  16. Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, Ouyang B, Li A, Chen J, Zheng G, et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci USA. 2017;114:E10871–E1088010880.

    Article  CAS  Google Scholar 

  17. Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer. 2009;125:1–8.

    Article  CAS  Google Scholar 

  18. Devassy JG, Nwachukwu ID, Jones PJ. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. 2015;73:155–65.

    Article  Google Scholar 

  19. Jordan BC, Mock CD, Thilagavathi R, Selvam C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci. 2016;152:135–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Naomi Ando and Kazuko Hamamoto for their technical assistance and Dr. Nobuyuki Mizoguchi for his excellent veterinary support.

Funding

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisamitsu Ide.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Velasco, M.A., Lu, Y., Kura, Y. et al. Chemopreventive effects of nanoparticle curcumin in a mouse model of Pten-deficient prostate cancer. Human Cell 33, 730–736 (2020). https://doi.org/10.1007/s13577-020-00337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00337-7

Keywords

Navigation