Skip to main content

Advertisement

Log in

Multi-lineage differentiation and clinical application of stem cells from exfoliated deciduous teeth

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Stem cells from human exfoliated deciduous teeth (SHED) have now been considered one of the most promising sources of stem cells for tissue engineering and stem cell therapies due to their stemness and potential to differentiate into other cell lines. The high proliferation rate, the differentiation capacity, the easy access and less ethical concerns make SHED a brilliant solution for many diseases. The purpose of this review is to describe current knowledge of SHED’s capability of differentiation, applications and immune status and to draw attention to further research on the mechanism and the dependability of stem cell therapy with SHED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100:5807–12. https://doi.org/10.1073/pnas.0937635100.

    Article  CAS  PubMed  Google Scholar 

  2. Rosa V. What and where are the stem cells for dentistry? Singap Dent J. 2013;34:13–8. https://doi.org/10.1016/j.sdj.2013.11.003.

    Article  Google Scholar 

  3. Zhang N, Chen B, Wang W, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95–102. https://doi.org/10.3892/mmr.2016.5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2007;184:105–16. https://doi.org/10.1159/000099617.

    Article  CAS  Google Scholar 

  5. Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int. 2016;2016:5957806–16. https://doi.org/10.1155/2016/5957806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosa V, Botero TM, Nör JE. Regenerative endodontics in light of the stem cell paradigm. Int Dent J. 2011;61:23–8. https://doi.org/10.1111/j.1875-595X.2011.00026.x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Suchánek J, Visek B, Soukup T, et al. Stem cells from human exfoliated deciduous teeth—isolation, long term cultivation and phenotypical analysis. Acta Med. 2010;53:93–9. https://doi.org/10.14712/18059694.2016.66.

    Article  Google Scholar 

  8. Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical-size calvarial defects in mice. Oral Dis. 2008;14:428–34. https://doi.org/10.1111/j.1601-0825.2007.01396.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vishwanath VR, Nadig RR, Nadig R, Prasanna JS, Karthik J, Pai VS. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: an in vitro study. J Conserv Dent. 2013;16:423–8. https://doi.org/10.4103/0972-0707.117509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mussano F, Genova T, Petrillo S, Roato I, Ferracini R, Munaron L. Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED. Int J Mol Sci. 2018;19:1454. https://doi.org/10.3390/ijms19051454.

    Article  CAS  PubMed Central  Google Scholar 

  11. Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E. Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int. 2014;2014:457059–119. https://doi.org/10.1155/2014/457059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol. 2012;57:1231–40. https://doi.org/10.1016/j.archoralbio.2012.02.014.

    Article  CAS  PubMed  Google Scholar 

  13. Pivoriuunas A, Surovas A, Borutinskaite V, et al. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev. 2010;19:1081–93. https://doi.org/10.1089/scd.2009.0315.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Zhong Q, Yang T, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep. 2018;17:6551–9. https://doi.org/10.3892/mmr.2018.8725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ching HS, Luddin N, Ab Rahman I, Ponnuraj KT. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr Stem Cell Res Ther. 2017;12:71–9. https://doi.org/10.2174/1574888X11666160815095733.

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35:1536–42. https://doi.org/10.1016/j.joen.2009.07.024.

    Article  PubMed  Google Scholar 

  17. Lee JM, Kim HY, Park JS, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med. 2019;13:319–27. https://doi.org/10.1002/term.2811.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Chen C, Liu S, et al. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J Dent Res. 2015;94:209–18. https://doi.org/10.1177/0022034514557672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sebastian AA, Kannan TP, Norazmi MN, Nurul AA. Interleukin-17A promotes osteogenic differentiation by increasing OPG/RANKL ratio in stem cells from human exfoliated deciduous teeth (SHED). J Tissue Eng Regen Med. 2018;12:1856–66. https://doi.org/10.1002/term.2706.

    Article  CAS  PubMed  Google Scholar 

  20. Rattanawarawipa P, Pavasant P, Osathanon T, Sukarawan W. Effect of lithium chloride on cell proliferation and osteogenic differentiation in stem cells from human exfoliated deciduous teeth. Tissue Cell. 2016;48:425–31. https://doi.org/10.1016/j.tice.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  21. Hara K, Yamada Y, Nakamura S, Umemura E, Ito K, Ueda M. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow–derived mesenchymal stem cells for mineralized tissue-forming cell biology. J Endod. 2011;37:1647–52. https://doi.org/10.1016/j.joen.2011.08.023.

    Article  PubMed  Google Scholar 

  22. Sukarawan W, Peetiakarawach K, Pavasant P, Osathanon T. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deciduous teeth. Arch Oral Biol. 2016;65:1–8. https://doi.org/10.1016/j.archoralbio.2016.01.010.

    Article  CAS  PubMed  Google Scholar 

  23. Nowwarote N, Sukarawan W, Kanjana K, Pavasant P, Fournier BPJ, Osathanon T. Interleukin 6 promotes an in vitro mineral deposition by stem cells isolated from human exfoliated deciduous teeth. R Soc Open Sci. 2018;5:180864. https://doi.org/10.1098/rsos.180864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang X, Zhao Q, Chen Y, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cells Nanomed Biotechnol. 2019;47:822–32. https://doi.org/10.1080/21691401.2019.1576706.

    Article  CAS  PubMed  Google Scholar 

  25. Han X, Nonaka K, Kato H, et al. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep. 2019;17:32–7. https://doi.org/10.1016/j.bbrep.2018.11.003.

    Article  PubMed  Google Scholar 

  26. Chen Y, Zhao Q, Yang X, Yu X, Yu D, Zhao W. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Cell Stress Chaperones. 2019. https://doi.org/10.1007/s12192-019-00981-5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol. 2014;60:408–15. https://doi.org/10.1016/j.archoralbio.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

  28. Nowwarote N, Sukarawan W, Pavasant P, Foster BL, Osathanon T. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther. 2018;9:1–14. https://doi.org/10.1186/s13287-018-1093-9.

    Article  CAS  Google Scholar 

  29. Rosa V, Zhang Z, Grande RHM, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92:970–5. https://doi.org/10.1177/0022034513505772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res. 2010;89:603–8. https://doi.org/10.1177/0022034510364487.

    Article  CAS  PubMed  Google Scholar 

  31. Khoroushi M, Foroughi MR, Karbasi S, Hashemibeni B, Khademi AA. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater Sci Eng C. 2018;89:128–39. https://doi.org/10.1016/j.msec.2018.03.028.

    Article  CAS  Google Scholar 

  32. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant. 2011;20:1003–13. https://doi.org/10.3727/096368910X539128.

    Article  PubMed  Google Scholar 

  33. Rosa V, Della Bona A, Cavalcanti BN, Nör JE. Tissue engineering: from research to dental clinics. Dent Mater. 2011;28:341–8. https://doi.org/10.1016/j.dental.2011.11.025.

    Article  CAS  Google Scholar 

  34. Dujaili MAA, Jaheel S, Abbas HN. Preparation of HA/beta-TCP scaffold and mechanical strength optimization using a genetic algorithm method. J Aust Ceram Soc. 2017;53:41–8. https://doi.org/10.1007/s41779-016-0007-5.

    Article  CAS  Google Scholar 

  35. Liu YJ, Su WT, Chen PH. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J Biomater Appl. 2018;32:765–74. https://doi.org/10.1177/0885328217740730.

    Article  CAS  PubMed  Google Scholar 

  36. -Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano-bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dent Res J. 2018;15:136–45. https://doi.org/10.4103/1735-3327.226524.

    Article  Google Scholar 

  37. Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res. 2009;88:249–54. https://doi.org/10.1177/0022034509333804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1:5. https://doi.org/10.1186/scrt5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su WT, Shih YA, Ko CS. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Regen Med. 2016;10:507–17. https://doi.org/10.1002/term.1783.

    Article  CAS  PubMed  Google Scholar 

  40. Chrząszcz P, Derbisz K, Suszyński K, et al. Application of peripheral nerve conduits in clinical practice: a literature review. Neurol Neurochir Pol. 2018;52:427–35. https://doi.org/10.1016/j.pjnns.2018.06.003.

    Article  PubMed  Google Scholar 

  41. Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010;19:1375–83. https://doi.org/10.1089/scd.2009.0258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol. 2011;55:189–95. https://doi.org/10.1387/ijdb.103090nn.

    Article  CAS  PubMed  Google Scholar 

  43. Su WT, Pan YJ. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng. 2016;13:046005. https://doi.org/10.1088/1741-2560/13/4/046005.

    Article  PubMed  Google Scholar 

  44. Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci. 2013;51:307–17. https://doi.org/10.1007/s12031-013-0046-0.

    Article  CAS  Google Scholar 

  45. Gonmanee T, Thonabulsombat C, Vongsavan K, Sritanaudomchai H. Differentiation of stem cells from human deciduous and permanent teeth into spiral ganglion neuron-like cells. Arch Oral Biol. 2018;88:34–41. https://doi.org/10.1016/j.archoralbio.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  46. Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res. 2015;1613:59–72. https://doi.org/10.1016/j.brainres.2015.04.001.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Zhang ZY, Yu H, et al. Long noncoding RNA C21orf121/bone morphogenetic protein 2/microRNA-140-5p gene network promotes directed differentiation of stem cells from human exfoliated deciduous teeth to neuronal cells. J Cell Biochem. 2019;120:1464–76. https://doi.org/10.1002/jcb.27313.

    Article  CAS  Google Scholar 

  48. -González M, Pecci-Lloret MP, -Bernal D, et al. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs). Odontology. 2018;106:125–34. https://doi.org/10.1007/s10266-017-0310-9.

    Article  CAS  PubMed  Google Scholar 

  49. Bento LW, Zhang Z, Imai A, et al. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res. 2013;92:51–7. https://doi.org/10.1177/0022034512466263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu JG, Gong T, Wang YY, et al. Inhibition of TGF-β Signaling in SHED enhances endothelial differentiation. J Dent Res. 2018;97:218–25. https://doi.org/10.1177/0022034517733741.

    Article  CAS  PubMed  Google Scholar 

  51. Wang PL, Zhu SY, Yuan CY, Wang L, Xu JG, Liu ZX. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med. 2018;42:1827–36. https://doi.org/10.3892/ijmm.2018.3761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong T, Heng BC, Xu J, et al. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J Biomed Mater Res Part A. 2017;105:1083–93. https://doi.org/10.1002/jbm.a.36003.

    Article  CAS  Google Scholar 

  53. Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791–6. https://doi.org/10.1177/0022034510368647.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther. 2015;6:171. https://doi.org/10.1186/s13287-015-0154-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishkitiev N, Yaegaki K, Imai T, et al. Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A. 2015;21:586–93. https://doi.org/10.1089/ten.tea.2014.0162.

    Article  CAS  PubMed  Google Scholar 

  56. Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep. 2019;9:1535. https://doi.org/10.1038/s41598-018-38275-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taguchi T, Yanagi Y, Yoshimaru K, et al. Regenerative medicine using stem cells from human exfoliated deciduous teeth (SHED): a promising new treatment in pediatric surgery. Surg Today. 2019. https://doi.org/10.1007/s00595-019-01783-z.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Murray KF, Carithers RL. Aasld. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology. 2005;41:1407–32. https://doi.org/10.1002/hep.20704.

    Article  PubMed  Google Scholar 

  59. Sugimura-Wakayama Y, Katagiri W, Osugi M, et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev. 2015;24:2687–99. https://doi.org/10.1089/scd.2015.0104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nicola FDC, Marques MR, Odorcyk F, et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res. 2017;1663:95–105. https://doi.org/10.1016/j.brainres.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  61. Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig. 2012;122:80–90. https://doi.org/10.1172/JCI59251.

    Article  CAS  PubMed  Google Scholar 

  62. Nicola F, Marques MR, Odorcyk F, et al. Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion. Mol Neurobiol. 2019;56:748–60. https://doi.org/10.1007/s12035-018-1127-4.

    Article  CAS  PubMed  Google Scholar 

  63. Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013;19:24–9. https://doi.org/10.1089/ten.tea.2011.0385.

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther. 2017;8:198–21111. https://doi.org/10.1186/s13287-017-0648-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alipour R, Karimi MM, -Beni B, Adib M, Sereshki N, Sadeghi F. Indoleamine 2,3-dioxygenase is dispensable for the immunomodulatory function of stem cells from human exfoliated deciduous teeth. Cell J. 2017;18:597–608. https://doi.org/10.22074/cellj.2016.4726.

    Article  PubMed  Google Scholar 

  66. Rossato C, Brandão WN, Castro SBR, et al. Stem cells from human-exfoliated deciduous teeth reduce tissue-infiltrating inflammatory cells improving clinical signs in experimental autoimmune encephalomyelitis. Biologicals. 2017;49:62–8. https://doi.org/10.1016/j.biologicals.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  67. Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther. 2019;10:1–14. https://doi.org/10.1186/s13287-019-1134-z.

    Article  CAS  Google Scholar 

  68. Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A. 2018;24:1341–53. https://doi.org/10.1089/ten.tea.2018.0016.

    Article  CAS  PubMed  Google Scholar 

  69. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60. https://doi.org/10.1038/nbt.2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chidgey AP, Boyd RL. Immune privilege for stem cells: not as simple as it looked. Cell Stem Cell. 2008;3:357–8. https://doi.org/10.1016/j.stem.2008.09.011.

    Article  CAS  PubMed  Google Scholar 

  71. Swijnenburg RJ, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA. 2008;105:12991–6. https://doi.org/10.1073/pnas.0805802105.

    Article  PubMed  Google Scholar 

  72. Ankrum J, Karp JM. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med. 2010;16:203–9. https://doi.org/10.1016/j.molmed.2010.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Whiting D, Chung WO, Johnson JD, Paranjpe A. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system. J Endod. 2018;44:1126–31. https://doi.org/10.1016/j.joen.2018.03.018.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) (Grant # 81800959) and the Postdoctoral Fund of Peking university hospital of stomatology (Grant # YS0203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Qin or Tianqian Hui.

Ethics declarations

Conflict of interest

No potential conflict of interest was disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., He, J., Chen, Y. et al. Multi-lineage differentiation and clinical application of stem cells from exfoliated deciduous teeth. Human Cell 33, 295–302 (2020). https://doi.org/10.1007/s13577-020-00323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00323-z

Keywords

Navigation