Skip to main content
Log in

Isolation and expression analysis of eight MADS-box genes in peach (Prunus persica var. nectarina ‘Luxing’)

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The MADS-box transcription factor (TF) plays a crucial regulatory role in plant vegetative growth, flower and fruit development. Eight MADS-box genes (designated as PpMADS15, 16, 17, 26, 27, 36, 37, 38; GenBank accession nos. KU559581, KU559582, KU559583, KU559592, KU559593, KU559602, KU559603, KU559604, respectively) were isolated from ‘Luxing’ (Prunus persica var. nectarina ‘Luxing’) peach by homologous comparison and RT-PCR, which contained open reading frames (ORF) of 597, 750, 1062, 615, 699, 1 107, 678 and 564 bp, respectively. The results of phylogenetic analysis revealed that PpMADS15 belonged to the AG subgroup, PpMADS16 to the SEP subgroup, PpMADS17 to the MIKC* group, PpMADS26, 27, and 38 to the Mα group, and PpMADS36 and 37 to the Mγ group. The results of the prediction for subcellular localization showed that eight PpMADS proteins were located in the nucleus. The results of promoter analysis indicated that there were multiple putative cis-acting elements that were involved in responsiveness to the following variables: light, defense and stress, low-temperature, heat stress, wound, fungal elicitor, anaerobic induction, MeJA, gibberellin, ABA, auxin, and SA. RT-PCR results showed that PpMADS15 was expressed in leaves, stems, roots, sepals, ovaries, stamens, petals, during flower and fruit development. PpMADS16 was expressed in stems, sepals, ovaries, stamens, petals, during flower and fruit development. PpMADS17 was expressed in stems, sepals, ovaries, stamens, petals, during flower and fruit development (except for 30 d). All members in the Mα and Mγ subgroups were expressed in roots, stems, leaves, sepals, ovaries, stamens, petals and during flower development, but PpMADS27 was expressed only during fruit development. These results suggested that eight PpMADS genes played a crucial regulatory role in vegetative growth, flower and fruit development of peaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

ORF:

Opening reading frame

qRT-PCR:

Quantitative real-time PCR

TF:

Transcription factor

References

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149(4):1713–1723

    Article  CAS  Google Scholar 

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130(2):605–617

    Article  CAS  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8(1):242

    Article  Google Scholar 

  • Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52(4):801–815

    Article  CAS  Google Scholar 

  • Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS-box genes in grapevine. Plant Physiol 149(1):354–369

    Article  Google Scholar 

  • Dong QL, Yu XM, Liu DD, Wang HR, An M, Yao YX, Wang CJ (2013) Cloning of NAD-malic enzymes and their expression analysis during tissues and fruit development of apple. Acta Hortic Sin 40(4):739–748

    CAS  Google Scholar 

  • Duan W, Song X, Liu T, Huang Z, Ren J, Hou X, Li Y (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol Genet Genomics 290(1):239–255

    Article  CAS  Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438

    Article  CAS  Google Scholar 

  • Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS-box proteins. Plant Cell 26(1):89–101

    Article  CAS  Google Scholar 

  • Giménez E, Pineda B, Capel J, Antón MT, Atarés A, Pérez-Martín F, García-Sogo B, Angosto T, Moreno V, Lozano R (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS ONE 5(12):e14427

    Article  Google Scholar 

  • Grimplet J, Martínez-Zapater JM, Carmona MJ (2016) Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genom 17:80

    Article  Google Scholar 

  • Gu YB, Ji ZR, Chi FM, Qiao Z, Xu CN, Zhang JX, Zhou ZS, Dong QL (2016) Genome-wide identification and expression analysis of the WRKY gene family in peach. Hereditas (Beijing) 38(3):254–270

    CAS  Google Scholar 

  • Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19(6):801–814

    Article  CAS  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23(11):2245–2258

    Article  CAS  Google Scholar 

  • Hu L, Liu S (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55(3):245–256

    Article  CAS  Google Scholar 

  • Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ (2013) Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73(6):1044–1056

    Article  CAS  Google Scholar 

  • Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55(2):212–223

    Article  CAS  Google Scholar 

  • Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20(3):635–647

    Article  CAS  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

    Article  CAS  Google Scholar 

  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7(4):854–875

    Article  CAS  Google Scholar 

  • Liu JH, Xu BY, Zhang J, Jin ZQ (2010) The interaction of MADS-box transcription factors and manipulating fruit development and ripening. Hereditas (Beijing) 32(9):893–902

    CAS  Google Scholar 

  • Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schiling S, Theißen G, Meng Z (2013) Functional conservation of MIKC*-Type MADS-box genes in Arabidopsis and rice pollen maturation. Plant Cell 25(4):1288–1303

    Article  CAS  Google Scholar 

  • Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101(1):5–8

    Article  CAS  Google Scholar 

  • Ma J, Sun W, Wan J, Mu S, Li M (2014) Cloning and expression analysis of a late embryogenesis abundant protein gene CpLEA from Chimonanthus praecox. Acta Hortic Sin 41(8):1663–1672

    CAS  Google Scholar 

  • Mara CD, Irish VF (2008) Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol 147(2):707–718

    Article  CAS  Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS-box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  CAS  Google Scholar 

  • Paenicová L, de-Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2013) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Article  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6(2):163–173

    Article  CAS  Google Scholar 

  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18(8):1862–1872

    Article  CAS  Google Scholar 

  • Puig J, Meynard D, Khong GN, Pauluzzi G, Guiderdoni E, Gantet P (2013) Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr Patterns 13(5):160–170

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378(10):1079–1101

    CAS  PubMed  Google Scholar 

  • Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62(3):1179–1188

    Article  CAS  Google Scholar 

  • Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40(6):3901–3911

    Article  CAS  Google Scholar 

  • Sui S, Luo J, Ma J, Zhu Q, Lei X, Li M (2012) Generation and analysis of expressed sequence tags from Chimonanthus praecox (Wintersweet) flowers for discovering stress-responsive and floral development-related genes. Comp Funct Genom. https://doi.org/10.1155/2012/134596

    Article  Google Scholar 

  • Tian Y, Dong QL, Ji ZR, Chi FM, Cong PH, Zhou ZS (2015) Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 555(2):277–290

    Article  CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva HS, Alamini F, Schmutz J, Morgante M, Rokhsar MD (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–493

    Article  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni JA (2002) MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296(5566):343–346

    Article  CAS  Google Scholar 

  • Wang CZ, Yu XM, Dong QL, Zhang AN, Liu W, Dong F, Wang SZ, Wang CJ (2015) Bioinformatic and expression analysis on the known MADS-box transcription factors at different development stages of flower in peach. J Nucl Agric Sci 29(5):849–858

    CAS  Google Scholar 

  • Wei B, Zhang R, Guo J, Liu D, Li A, Fan R, Mao L, Zhang X (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS ONE 9(1):e84781

    Article  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78(2):203–209

    Article  CAS  Google Scholar 

  • Wells CE, Vendramin E, Tarodo SJ, Verde I, Bielenberg DG (2015) A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol 15(1):41

    Article  Google Scholar 

  • Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J (2014) Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Mol Genet Genomics 289(5):903–920

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 31501742), Shandong Agricultural Good Cultivar Project (Grant No. 2016LZGC034), and Key Research and Development Plan (Major Key Technologies) of Shandong Province (Grant No. 2016ZDJS10A01). I would like to thank Professor Thomas Alan Gavin, Cornell University, and Xu Yi, for help with editing the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hf., Dong, Ql., Jia, Hz. et al. Isolation and expression analysis of eight MADS-box genes in peach (Prunus persica var. nectarina ‘Luxing’). J. Plant Biochem. Biotechnol. 27, 435–442 (2018). https://doi.org/10.1007/s13562-018-0452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0452-z

Keywords

Navigation