Skip to main content
Log in

Novel microsatellite markers identification and diversity characterization in Pteris cretica L.

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To assess genetic variation, 33 novel microsatellite markers were identified through nucleotide sequencing of enriched genomic libraries of Pteris cretica. Di- repeats (79.7 %) were found to be most predominant followed by tri (15.8 %), tetra (2.3 %) and hexa (2.3 %) type of repeat motifs. Evaluating these markers in six populations (N = 48) of Western Himalayan range detected average polymorphism information content (PIC) of 0.32. Combined neighbor joining (NJ) and principal coordinate analysis (PCoA) grouped all the populations in two major clusters with high levels of intermixing of accessions in each cluster. This suggests that P. cretica populations of Western Himalaya have broadly been mixed with two sub-populations. High within population variance (98.7 %) and low genetic differentiation (Φst: 0.013), recorded in the analysis of molecular variance (AMOVA). For the first time, highly polymorphic novel genomic microsatellite markers were identified and utilized for revealing genetic diversity of P. cretica in Western Himalayan range in context of established hypothesis of genetic variations based on allozyme markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SSRs:

Simple sequence repeats

ESTs:

Expressed sequence tags

PIC:

Polymorphic information content

PCR:

Polymerase chain reaction

References

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj P, Kumar R, Sharma H, Tewari R, Ahuja PS, Sharma RK (2013) Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica ssp. assamica) and related Camellia species. Plant Breed 132:748–763

    Article  CAS  Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    Article  CAS  Google Scholar 

  • Bucharova A, Munzbergova Z (2012) Gene flow among populations of two rare co-occurring fern species differing in ploidy level. PLoS ONE 7:e45855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chao YS, Liu HY, Chiang YC, Chiou WL (2012) Polyploidy and speciation in Pteris (Pteridaceae). J Bot 2012: 7, doi:10.1155/2012/817920. http://dx.doi.org/10.1155/2012/817920

  • DeBary A (1878) Uber apogamie farne und die erscheinung der apogamieim allgemeinen. Bot Zeit 36:450–495

    Google Scholar 

  • Doyle JJ, Doyle JE (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity of clonal plant species. Am J Bot 74:123–131

    Article  Google Scholar 

  • Farlow WG (1874) Memoirs: an asexual growth from the prothallus of Pteris cretica. Q J Microsc Sci 2:266–272

    Google Scholar 

  • Grusz AL, Windham MD, Pryer KM (2009) Deciphering the origins of apomictic polyploids in the Cheilanthesyavapensis complex (Pteridaceae). Am J Bot 96:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Heilbronn A (1932) Polyploidy and generational change. Ber Dtsch Bot Ges 50:289–289

    Google Scholar 

  • Huang YM, Hsu SM, Hsieh TS, Chou HU, Chiou WL (2011) Three Pteris species (pteridacae, pteridophyta) reprodcue by apogamy. Bot Stud 52:79–87

    Google Scholar 

  • Ishikawa H, Ito M, Watano Y, Kurita S (2003) Extensive electrophoretic variation in apogamous fern species. Dryopterisnipponensis (Dryopteridaceae) Actaphytotaxgeobot 54:59–68

    CAS  Google Scholar 

  • Jaruwattanaphan T, Matsumoto S, Watano Y (2013) Reconstructing hybrid speciation events in the Pteris cretica group (pteridaceae) in Japan and adjacent regions. Syst Bot 38:15–27

    Article  Google Scholar 

  • Jha J, Sinha BM (1987) Cytomorphological variability in apogamous populations of Pteris cretica L. Caryologia 40:71–78

    Article  Google Scholar 

  • Kanamori K (1972) Apogamy in ferns with special reference to the apogamous embryogenesis. Sci Rep TKD Sec B 15:111–131

    Google Scholar 

  • Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. Bot Mag Tokyo 105:105–124

    Article  Google Scholar 

  • Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin coated magnetic particles. Biotechniques 16:656–662

    PubMed  CAS  Google Scholar 

  • Klekowski JR, Edward J (1973) Sexual and subsexual systems in homosporous pteridophytes: a new hypothesis. Am J Bot 60:535–544

    Article  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Kato M, Iwatsuki K (1992) Diploid and triploid offspring of triploid agamosporous fern Dryopteris pacifica. Bot Mag Shokubutsu-Gaku-Zasshi 105:443–452

    Article  Google Scholar 

  • Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Morton CV (1957) Observations on cultivated ferns. I. Am Fern J 47:7–14

    Article  Google Scholar 

  • Ootsuki R, Sato H, Nakato N, Murakami N (2012) Evidence of genetic segregation in the apogamous fern species Cyrtomium fortunei (Dryopteridaceae). J Plant Res 125(5):605–612

    Article  PubMed  Google Scholar 

  • Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Park CH, Kato M (2003) Apomixis in the interspecific triploid hybrid fern Cornopteris christenseniana (Woodsiaceae). J Plant Res 116:93–103

    PubMed  Google Scholar 

  • Parker ED (1979) Ecological implications of clonal diversity in parthenogeneticmorpho species. Am Zool 19:753–762

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) Darwin software. http://darwin.cirad.fr/darwin

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcusla natus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robinson RC (2009) Invasive and problem ferns: a European perspective. Int Urban Ecol Rev 4:83–91

    Google Scholar 

  • Roy RP, Sinha BMB, Sakya AR (1971) Cytology of some ferns of Kathmandu valley. Br Fern Gaz 10:193–199

    Google Scholar 

  • Schneller J, Holderegger R, Gugerli F, Eichenberger K, Lutz E (1998) Patterns of genetic variation detected by RAPDs suggest a single origin with subsequent mutations and long -distance dispersal in the apomictic fern Dryopteris remota (Dryopteridaceae). Am J Bot 85:1038–1038

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltis PS, Soltis DE (1990) Genetic variation within and among populations of ferns. Am Fern J 80:161–172

    Article  Google Scholar 

  • Suzuki T, Iwatsuki K (1990) Genetic variation in agamosporous fern Pteris cretica L. in Japan. Heredity 65:221–227

    Article  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 - new capabilities and interfaces. Nucleic Acids Res 40:115

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: feature sand applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Verma SC, Khullar SP (1965) Cytogenetics of the western Himalayan Pteris cretica complex. Ann Bot 29:673–681

    Google Scholar 

  • Walker TG (1962) Cytology and evolution in the fern genus Pteris L. Evolution 16:27–43

    Article  Google Scholar 

  • Watano Y, Iwatsuki K (1988) Genetic variation in the ‘Japanese apogamousform’of the fern Aspleniumun ilaterale Lam. Bot Mag Shokubutsu-Gaku-Zasshi 101:213–222

    Article  Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploidy pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526

    Article  Google Scholar 

  • Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Cardle L, Ramsay L, Gibby M, Powell W (2003) Development of EST‐SSRs from the alpine lady‐fern, Athyrium distentifolium. Mol Ecol Notes 3:287–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work presented in the manuscript was funded by Department of Biotechnology (DBT) and Council of Scientific and Industrial Research (CSIR), Government of India. This is IHBT communication number 3624.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar Sharma.

Additional information

Vishal Kumar and Abhishek Bhandawat contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Topographical location of forty eight P. cretica accessions sampled from Western Himalayan range (PPTX 324 kb)

Supplementary Table 1

Partitioning of diversity of 48 accessions. (DOCX 11 kb)

Supplementary Table 2

Analysis of molecular variance (AMOVA) of 48 P. cretica accessions (DOCX 12 kb)

Supplementary Table 3

Test for population differentiation. (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Bhandawat, A., Sharma, H. et al. Novel microsatellite markers identification and diversity characterization in Pteris cretica L.. J. Plant Biochem. Biotechnol. 25, 104–110 (2016). https://doi.org/10.1007/s13562-015-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0316-8

Keywords

Navigation