Skip to main content
Log in

Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain \(\varOmega \subset {\mathbb {R}}^N\) are also proved. As application, we measure explicitly how small has to be \(\text {diam}(\varOmega )\) so that weak and strong maximum principles associated to this problem hold in \(\varOmega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alziary, B., Fleckinger, J., Lècureux, M.H.: Principal eigenvalue and maximum principle for some elliptic systems defined on general domains with refined Dirichlet boundary condition. Commun. Math. Anal. 7, 1–11 (2009)

    MathSciNet  Google Scholar 

  2. Amann, H.: Maximum principles and principal eigenvalues. 10 Mathematical Essays on Approximation in Analysis and Topology. Elsevier Science, 1-60 (2005). https://doi.org/10.1016/B978-044451861-3/50001-X

  3. Antón, I., López-Gómez, J.: Principal eigenvalue and maximum principle for cooperative periodic-parabolic systems. Nonlinear Anal. 178, 152–189 (2019). https://doi.org/10.1016/j.na.2018.07.014

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H., Nirenberg, L., Varadhan, S.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math. 47(1), 47–92 (1994). https://doi.org/10.1002/cpa.3160470105

    Article  MathSciNet  Google Scholar 

  5. Cano-Casanova, S., López-Gómez, J.: Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J. Diff. Eq. 178(1), 123–211 (2002). https://doi.org/10.1006/jdeq.2000.4003

    Article  MathSciNet  Google Scholar 

  6. Caudevilla, P.Á., López-Gómez, J.: Asymptotic behaviour of principal eigenvalues for a class of cooperative systems. J. Diff. Eq. 244(5), 1093–1113 (2008). https://doi.org/10.1016/j.jde.2007.10.004

    Article  MathSciNet  Google Scholar 

  7. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Positive splutions of semilinear elliptic systems. Comm. P.D.E. 17, 923–940 (1992). https://doi.org/10.1080/03605309208820869

    Article  Google Scholar 

  8. Clément, P., Manásevich, R.F., Mitidieri, E.: Positive solutions for a quasilinear system via blow-up. Comm. P.D.E. 18, 2071–2106 (1993). https://doi.org/10.1080/00927879308824124

    Article  MathSciNet  Google Scholar 

  9. Colasuonno, F., Ferrari, F., Gervasio, P., Quarteroni, A.: Some evaluations of the fractional \(p\)-Laplace operator on radial functions. Mathematics In Engineering 5(1), 1–23 (2023). https://doi.org/10.3934/mine.2023015

    Article  MathSciNet  Google Scholar 

  10. Cuesta, M., Takác, P.: Nonlinear eigenvalue problems for degenerate elliptic systems. Differ. Integral Equ. 23, 1117–1138 (2010). https://doi.org/10.57262/die/1356019076

    Article  MathSciNet  Google Scholar 

  11. Del Pezzo, L.M., Quaas, A.: A Hopf’s lemma and a strong minimum principle for the fractional \(p\)-Laplacian. J. Diff. Eq. 263(1), 765–778 (2017). https://doi.org/10.1016/j.jde.2017.02.051

    Article  MathSciNet  Google Scholar 

  12. De Nápoli, P.L., Pinasco, J.P.: Estimates for eigenvalues of quasilinear elliptic systems. J. Diff. Eq. 227(1), 102–115 (2006). https://doi.org/10.1016/j.jde.2006.01.004

    Article  MathSciNet  Google Scholar 

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). https://doi.org/10.1016/j.bulsci.2011.12.004

    Article  MathSciNet  Google Scholar 

  14. Felmer, P., Martínez, S.: Existence and uniqueness of positive solutions to certain differential systems. Adv. Differ. Equ. 3, 575–593 (1998). https://doi.org/10.57262/ade/1366292564

    Article  MathSciNet  Google Scholar 

  15. De Figueiredo, D.G.: Semilinear elliptic systems: existence, multiplicity, symmetry of solutions. Handbook of differential equations: stationary partial differential equations 5, 1–48 (2008)

    MathSciNet  Google Scholar 

  16. de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994). https://doi.org/10.1007/978-3-319-02856-926

    Article  MathSciNet  Google Scholar 

  17. Hulshof, J., Vandervorst, R.C.A.M.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114(1), 32–58 (1993). https://doi.org/10.1006/jfan.1993.1062

    Article  MathSciNet  Google Scholar 

  18. Iannizzotto, A., Mosconi, S., Papageorgiou, N.S.: On the logistic equation for the fractional \(p\)-Laplacian. Math. Nachr. 296(4), 1451–1468 (2023). https://doi.org/10.1002/mana.202100025

    Article  MathSciNet  Google Scholar 

  19. Iannizzotto, A., Mosconi, S.J., Squassina, M.: Global Hölder regularity for the fractional \( p \)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016). https://doi.org/10.4171/rmi/921

    Article  MathSciNet  Google Scholar 

  20. Iannizzotto, A., Mosconi, S.J., Squassina, M.: Fine boundary regularity for the degenerate fractional \(p\)-Laplacian. J. Funct. Anal. 279(8), 108659 (2020). https://doi.org/10.1016/j.jfa.2020.108659

    Article  MathSciNet  Google Scholar 

  21. Iannizzotto, A.: Monotonicity of eigenvalues of the fractional \( p \)-Laplacian with singular weights. Topol. Methods Nonlinear Anal. 61, 423–443 (2023). https://doi.org/10.12775/TMNA.2022.024

    Article  MathSciNet  Google Scholar 

  22. Leite, E.J.F., Montenegro, M.: A priori bounds and positive solutions for non-variational fractional elliptic systems. Differ. Integral Equ. 30, 947–974 (2017). https://doi.org/10.57262/die/1504231281

    Article  MathSciNet  Google Scholar 

  23. Leite, E.J.F., Montenegro, M.: On positive viscosity solutions of fractional Lane-Emden systems. Topol. Methods Nonlinear Anal. 53, 407–425 (2019). https://doi.org/10.12775/TMNA.2019.005

    Article  MathSciNet  Google Scholar 

  24. Leite, E.J.F.: Maximum and comparison principles for degenerate elliptic systems and some applications. J. Math. Anal. Appl. 495, 124757 (2021). https://doi.org/10.1016/j.jmaa.2020.124757

    Article  MathSciNet  Google Scholar 

  25. Leite, E.J.F., Montenegro, M.: Maximum and comparison principles to Lane-Emden systems. J. Lond. Math. Soc. 101, 23–42 (2020). https://doi.org/10.1112/jlms.12256

    Article  MathSciNet  Google Scholar 

  26. Leite, E.J.F., Montenegro, M.: Principal curves to nonlocal Lane-Emden systems and related maximum principles. Calc. Var. Partial Differ. Equ. 59, 118 (2020). https://doi.org/10.1007/s00526-020-01770-0

    Article  MathSciNet  Google Scholar 

  27. Leite, E.J.F.: On the principal eigenvalues of the degenerate elliptic systems. Electron. J. Qual. Theory Differ. Equ. 40, 1–15 (2020). https://doi.org/10.14232/ejqtde.2020.1.40

    Article  MathSciNet  Google Scholar 

  28. Leite, E.J.F.: Maximum principles and ABP estimates to nonlocal Lane-Emden systems and some consequences. Adv. Nonlinear Stud. 21, 69–71 (2021). https://doi.org/10.1515/ans-2021-2042

    Article  MathSciNet  Google Scholar 

  29. López-Gómez, J., Molina-Meyer, M.: The maximum principle for cooperative weakly coupled elliptic systems and some applications. Differ. Integral Equ. 7, 383–398 (1994). https://doi.org/10.57262/die/1369330435

    Article  MathSciNet  Google Scholar 

  30. López-Gómez, J.: The maximum principle and the existence of principal eigenvalue for some linear weighted boundary value problems. J. Diff. Eq. 127, 263–294 (1996). https://doi.org/10.1006/jdeq.1996.0070

    Article  MathSciNet  Google Scholar 

  31. Mitidieri, E.: A Rellich type identity and applications. Comm. P.D.E. 18, 125–151 (1993). https://doi.org/10.1080/03605309308820923

    Article  MathSciNet  Google Scholar 

  32. Montenegro, M.: The construction of principal spectra curves for Lane-Emden systems and applications. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 29, 193–229 (2000)

    Google Scholar 

  33. Protter, M.: Lower bounds for the first eigenvalue of elliptic equations. Ann. of Math. 71, 423–444 (1960). https://doi.org/10.2307/1969937

    Article  MathSciNet  Google Scholar 

  34. Serrin, J., Zou, H.: Existence of positive entire solutions of elliptic Hamiltonian systems. Comm. P.D.E. 23, 577–599 (1998). https://doi.org/10.1080/03605309808821356

    Article  MathSciNet  Google Scholar 

  35. Sweers, G.: Strong positivity in \(C(\overline{\Omega })\) for elliptic systems. Math. Z. 209, 251–271 (1992). https://doi.org/10.1007/BF02570833

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by FAPEMIG/ APQ-02375-21, APQ-04528-22, FAPEMIG/RED-00133-21 and CNPq Process 307575/2019-5. The second author was partially supported by CNPq/Brazil (PQ 316526/2021-5) and Fapemig/Brazil (Universal-APQ-00709-18). The authors are indebted to the anonymous referees for their careful reading and valuable comments in order to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edir J. F. Leite.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araujo, A.L.A., Leite, E.J.F. & Medeiros, A.H.S. Principal curves to fractional m-Laplacian systems and related maximum and comparison principles. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00293-1

Keywords

Mathematics Subject Classification

Navigation