Skip to main content
Log in

Non-confluence of fractional stochastic differential equations driven by Lévy process

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate a class of stochastic Riemann-Liouville type fractional differential equations driven by Lévy noise. By using Itô formula for the considered equation, we attempt to explore the non-confluence property of solution for the considered equation under some appropriate conditions. Our approach is to construct some suitable Lyapunov functions which is novel in exploring the non-confluence property of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abouagwa, M., Li, J.: Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with non-Lipschitz coefficients. Stochastics and Dynamics 19(04), 1950029 (2019)

    Article  MathSciNet  Google Scholar 

  2. Abouagwa, M., Li, J.: Stochastic fractional differential equations driven by Lévy noise under Carathéodory conditions. J. Math. Phys. 60, 022701 (2019)

    Article  MathSciNet  Google Scholar 

  3. Abouagwa, M., Liu, J., Li, J.: Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type. Appl. Math. Comput. 329, 143–153 (2018)

    MathSciNet  Google Scholar 

  4. Ahmadova, A., Mahmudov, N.I.: Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fractals 139, 110253 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bahlali, K., Mezerdi, B.: Some properties of solutions of stochastic differential equations driven by semi-martingales. Random Operators and Stochastic Equations 9(4), 307–318 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bahlali, K., Hakassou, A., Ouknine, Y.: A class of stochastic differential equations with super-linear growth and non-Lipschitz coefficients. Stochastics: An International Journal of Probability and Stochastic Processes 87(5), 806–847 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dong, Y.: Jump stochastic differential equations with non-Lipschitz and superlinearly growing coefficients. Stochastics: An International Journal of Probability and Stochastic Processes 90(5), 782–806 (2018)

    Article  MathSciNet  Google Scholar 

  8. Émery, M.: Non confluence des solutions d\(^{\prime }\)une equation stochastique lipshitzinne. Séminaire de Probabilités XV. 850, 587–589 (1981)

    Google Scholar 

  9. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: Fractional vector calculus in the frame of a generalized Caputo fractional derivative. UPB Sci. Bull., Ser. A. 80(4), 219–228 (2018)

    MathSciNet  Google Scholar 

  10. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to \((dt)^{\alpha }\). Appl. Math. Lett. 18, 739–748 (2005)

    Article  MathSciNet  Google Scholar 

  11. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  13. Lan, G., Wu, J.L.: New sufficient conditions of existence, moment estimations and non-confluence for SDEs with non-Lipchitz coefficients. Stochastic Processes and their Applications 124(12), 4030–4049 (2014)

    Article  MathSciNet  Google Scholar 

  14. Luo, D., Zhu, Q., Luo, Z.: An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett. 105, 106290 (2020)

    Article  MathSciNet  Google Scholar 

  15. Morales, M.G., Došlá, Z.: Weighted Cauchy problem: fractional versus integer order. Journal of Integral Equations and Applications 33(4), 497–509 (2021)

    Article  MathSciNet  Google Scholar 

  16. Pedjeu, J.C., Ladde, G.S.: Stochastic fractional differential equations: modelling, method and analysis. Chaos Solitons Fractals 45, 279–293 (2012)

    Article  MathSciNet  Google Scholar 

  17. Shen, G., Wu, J.L., Xiao, R., Zhan, W.: Stability of a non-Lipschitz stochastic Riemann-Liouville type fractional differential equation driven by Lévy Noise. Acta Applicandae Mathematicae 180(2), (2022)

  18. Uppman, A.: Sur le flot d\(^{\prime }\)une équation différentielle stochastique. Séminaire de Probabilités de Strasbourg 16, 268–284 (1982)

    MathSciNet  Google Scholar 

  19. Valério, D., Machado, J.T., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014). https://doi.org/10.2478/s13540-014-0185-1

    Article  MathSciNet  Google Scholar 

  20. Wu, Q.: A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations. Cogent Mathematics 4, 1279781 (2017)

    Article  MathSciNet  Google Scholar 

  21. Xi, F., Zhu, C.: Jump type stochastic differential equations with non-Lipschitz coefficients: non confluence, feller and strong feller properties, and exponential ergodicity. Journal of Differential Equations 266(8), 4668–4711 (2017)

    Article  MathSciNet  Google Scholar 

  22. Xu, L., Li, Z.: Stochastic fractional evolution equations with fractional Brownian motion and infinite delay. Applied Mathematics and Computation 336, 36–46 (2018)

    Article  MathSciNet  Google Scholar 

  23. Xu, W., Xu, W., Lu, K.: An averaging principle for stochastic differential equations of fractional order \(0<\alpha <1\). Fract. Calc. Appl. Anal. 23(3), 908–919 (2020). https://doi.org/10.1515/fca-2020-0046

    Article  MathSciNet  Google Scholar 

  24. Yamada, T.: On the non-confluent property of solutions of one-dimensional stochastic differential equations. Stochastics: An International Journal of Probability and Stochastic Processes 17(1–2), 111–124 (1986)

    Article  Google Scholar 

  25. Yamada, T., Ogura, Y.: On the strong comparison theorems for solutions of stochastic differential equations. Probability Theory and Related Fields 56, 3–19 (1981)

    MathSciNet  Google Scholar 

  26. Yang, Z., Zheng, X., Zhang, Z., Wang, H.: Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise. Chaos, Solitons and Fractals 142, 110392 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors Zhi Li and Liping Xu are partially financial supported by the NNSF of China (No. 11901058) and Natural Science Foundation of Hubei Province (No. 2021CFB543). The author Tianquan Feng is partially financial supported by the NNSF of China (No. 61906095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianquan Feng.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Feng, T. & Xu, L. Non-confluence of fractional stochastic differential equations driven by Lévy process. Fract Calc Appl Anal 27, 1414–1427 (2024). https://doi.org/10.1007/s13540-024-00278-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-024-00278-0

Keywords

Navigation