Skip to main content
Log in

Generalized fractional Dirac type operators

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We introduce a class of fractional Dirac type operators with time variable coefficients by means of a Witt basis, the Djrbashian–Caputo fractional derivative and the fractional Laplacian, both operators defined with respect to some given functions. Direct and inverse fractional Cauchy type problems are studied for the introduced operators. We give explicit solutions of the considered fractional Cauchy type problems. We also use a recent method to recover a variable coefficient solution of some inverse fractional wave and heat type equations. Illustrative examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, T., Tolksdorf, J.: The generalized Lichnerowicz formula and analysis of Dirac operators. J. Reine Angew. Math. 471, 23–42 (1996). https://doi.org/10.1515/crll.1996.471.23

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017). https://doi.org/10.1016/j.cnsns.2016.09.006

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time-Depend Mater 20, 175–195 (2016). https://doi.org/10.1007/s11043-016-9290-3

    Article  Google Scholar 

  4. Baleanu, D., Restrepo, J.E., Suragan, D.: A class of time-fractional Dirac type operators. Chaos Soliton Fract. 143, 110590 (2021). https://doi.org/10.1016/j.chaos.2020.110590

    Article  MathSciNet  MATH  Google Scholar 

  5. Berline, N., Getzler, E., Verne, M.: Heat Kernels and Dirac Operators. Springer-Verlag, Berlin/ Heidelberg/ New York (1991)

    Google Scholar 

  6. Bernardo, L.M., Soares, O.D.: Optical fractional Fourier transforms with complex orders. Appl. Opt. 35(17), 3163–3166 (1996). https://doi.org/10.1364/AO.35.003163

    Article  Google Scholar 

  7. Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic Boundary Problems for Dirac Operators. Birkhäuser, Boston/Basel/Berlin (1993)

    Book  MATH  Google Scholar 

  8. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008). https://doi.org/10.1007/s00222-007-0086-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Cerejeiras, P., Kähler, U., Sommen, F.: Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains. Math. Meth. Appl. Sci. 28(14), 1715–1724 (2005). https://doi.org/10.1002/mma.634

    Article  MathSciNet  MATH  Google Scholar 

  10. Cerejeiras, P., Nolder, C.A., Ryan, J., Vanegas, C.J.: Clifford analysis and related topics. In honor of Paul A. M. Dirac, CART 2014, Tallahassee, Florida, December 15–17, 2014. Cham: Springer (2018)

  11. Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator. Related REDUCE software by F. Brackx and D. Constales. Dordrecht etc.: Kluwer Academic Publishers (1992)

  12. Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo type. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  13. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional difusion equations. J. Differential Equations 199(2), 211–255 (2004). https://doi.org/10.1016/j.jde.2003.12.002

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Nabulsi, R.A.: Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos Solitons Fract. 42(5), 2614–2622 (2009). https://doi.org/10.1016/j.chaos.2009.04.002

    Article  MATH  Google Scholar 

  15. Erdélyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  16. Erdélyi, A.: An integral equation involving Legendre functions. J. Soc. Ind. Appl. Math. 12(1), 15–30 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fernandez, A., Restrepo, J.E., Djida, J.D.: On the fractional Laplacian of a function with respect to another function. hal-03318401f (2021)

  18. Ferreira, M., Rodrigues, M.M., Vieira, N.: Fundamental solution of the time-fractional telegraph Dirac operator. Math. Meth. Appl. Sci. 40(18), 7033–7050 (2017). https://doi.org/10.1002/mma.4511

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, M., Vieira, N.: Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators. J. Math. Anal. Appl. 447(1), 329–353 (2017). https://doi.org/10.1016/j.jmaa.2016.08.052

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferreira, M., Rodrigues, M.M., Vieira, N.: First and second fundamental solutions of the time-fractional telegraph equation with Laplace or Dirac operators. Adv. Appl. Clifford Algebras 28, 42 (2018). https://doi.org/10.1007/s00006-018-0858-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbert, J., Murray, M.A.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  22. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions. Related Topics and Applications, 2nd edn. Springer, New York (2020)

  23. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Book  MATH  Google Scholar 

  24. Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Akademie-Verlag, Berlin (1989)

    Book  MATH  Google Scholar 

  25. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice. Wiley, Chichester (1997)

  26. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006). https://doi.org/10.1007/s00397-005-0043-5

    Article  Google Scholar 

  27. Karazym, M., Ozawa, T., Suragan, D.: Multidimensional inverse Cauchy problems for evolution equations. Inverse Probl. Sci. En. 28(11), 1582–1590 (2020). https://doi.org/10.1080/17415977.2020.1739034

    Article  MathSciNet  MATH  Google Scholar 

  28. Kähler, U., Vieira. N.: Fractional Clifford analysis. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds.) Hypercomplex Analysis: New perspectives and applications, Trends in Mathematics, pp. 191–201. Birkháuser, Basel (2014). https://doi.org/10.1007/978-3-319-08771-9_13

  29. Kian, Y., Oksanen, L., Soccorsi, E., Yamamoto, M.: Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ Equations. 264(2), 1146–1170 (2018). https://doi.org/10.1016/j.jde.2017.09.032

    Article  MathSciNet  MATH  Google Scholar 

  30. Kilbas, A.A., Marzan, S.A.: Cauchy problem for differential equation with Caputo derivative. Fract. Calc. Appl. Anal. 7(3), 297–321 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  32. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Sci. Tech. & J. Wiley, Harlow-N. York (1994)

    MATH  Google Scholar 

  33. Kober, H.: On a theorem of Schur and on fractional integrals of purely imaginary order. Trans. Amer. Math. Soc. 50(1), 160–174 (1941). https://doi.org/10.2307/1989915

    Article  MathSciNet  MATH  Google Scholar 

  34. Kochubei, A., Luchko, Y. (eds).: Fractional Differential Equations. Volume 2 in Ser. Handbook of Fractional Calculus with Applications. De Gruyter, Germany (2019)

  35. Krasnoschok, M., Vasylyeva, N.: On a non classical fractional boundary-value problem for the Laplace operator. J. Differ. Equations 257(g), 1814–1839 (2014). https://doi.org/10.1016/j.jde.2014.05.022

    Article  MATH  Google Scholar 

  36. Landkof, N.S.: Foundations of Modern Potential Theory. Springer-Verlag, Berlin (1972)

    Book  MATH  Google Scholar 

  37. Li, G., Zhang, D., Jia, X., Yamamato, M.: Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time fractional diffusion equation. Inverse Probl. 29(6), #065014 (2013). https://doi.org/10.1088/0266-5611/29/6/065014

  38. Love, E.R.: Some integral equations involving hypergeometric functions. Proc. Edinburgh Math. Soc. 15(3), 169–198 (1967). https://doi.org/10.1017/S0013091500011706

    Article  MathSciNet  MATH  Google Scholar 

  39. Love, E.R.: Two more hypergeometric integral equations. Proc. Cambridge Philos. Soc. 63(4), 1055–1076 (1967). https://doi.org/10.1017/S0305004100042110

    Article  MathSciNet  MATH  Google Scholar 

  40. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Mitrea, M.: Generalized Dirac operators on nonsmooth manifolds and Maxwell’s equations. J. Fourier Anal. Appl. 7, 207–256 (2001). https://doi.org/10.1007/BF02511812

    Article  MathSciNet  MATH  Google Scholar 

  43. Naqvi, Q.A., Abbas, M.: Complex and higher order fractional curl operator in electromagnetics. Opt. Commun. 241(4–6), 349–355 (2004). https://doi.org/10.1016/j.optcom.2004.07.028

    Article  Google Scholar 

  44. Nezza, E. Di., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). https://doi.org/10.1016/j.bulsci.2011.12.004

  45. Raspini, A.: Simple solutions of the fractional Dirac equation of order \(2/3\). Phys. Scr. 64(1), 20–22 (2001). https://doi.org/10.1238/Physica.Regular.064a00020

    Article  MATH  Google Scholar 

  46. Restrepo, J.E., Suragan, D.: Direct and inverse Cauchy problems for generalized space-time fractional differential equations. Adv. Differ. Equ. 26(7–8), 305–339 (2021). https://doi.org/10.57262/ade026-0708-305

    Article  MathSciNet  MATH  Google Scholar 

  47. Restrepo, J.E., Ruzhansky, M., Suragan, D.: Explicit representations of solutions for linear fractional differential equations with variable coefficients. Appl. Math. Comput. 403, #126177 (2021). https://doi.org/10.1016/j.amc.2021.126177

  48. Roepsdorff, G., Vehns, Ch.: Generalized Dirac operators and superconnections. arXiv:math-ph/9911006 (1999)

  49. Ross, B., Northover, F.H.: A use for a derivative of complex order in the fractional calculus or what, indeed, is \(d^{3-(1/2)i}/dx^{3-(1/2)i}\) and what can you do with it? Indian J. Pure Appl. Math. 9(4), 400–406 (1978)

    MathSciNet  MATH  Google Scholar 

  50. Ross, B., Samko, S., Love, E.: Functions that have no first order derivate might have fractional derivatives of all orders less than one. Real Anal. Exch. 20(2), 140–157 (1994/5)

  51. Ruzhansky, M., Tokmagambetov, N., Torebek, B.: On a non-local problem for a multi-term fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 23, 324–355 (2020). https://doi.org/10.1515/fca-2020-0016

    Article  MathSciNet  MATH  Google Scholar 

  52. Schneider, W.R., Wyss, W.: Fractional Diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989). https://doi.org/10.1063/1.528578

    Article  MathSciNet  MATH  Google Scholar 

  53. Sakamoto, K., Yamamato, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011). https://doi.org/10.1016/j.jmaa.2011.04.058

    Article  MathSciNet  MATH  Google Scholar 

  54. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)

  55. Shahiri, M., Ranjbar, A., Karami, M.R., Ghaderi, R.: New tuning design schemes of fractional complex-order PI controller. Nonlinear Dyn. 84, 1813–1835 (2016). https://doi.org/10.1007/s11071-016-2608-5

    Article  MathSciNet  MATH  Google Scholar 

  56. Stein, E.L.: Singular Integrals And Differentiability Properties Of Functions. Princeton Mathematical Series (1970)

    MATH  Google Scholar 

  57. Su, X., Zhao, Sh., Li, M.: Local well-posedness of semilinear space-time fractional Schrodinger equation. J. Math. Anal. Appl. 479(1), 1244–1265 (2019). https://doi.org/10.1016/j.jmaa.2019.06.077

    Article  MathSciNet  MATH  Google Scholar 

  58. Tatar, S., Ulusoy, S.: Analysis of direct and inverse problems for a fractional elastoplasticity model. Filomat. 31(3), 699–708 (2017). https://doi.org/10.2298/FIL1703699T

    Article  MathSciNet  MATH  Google Scholar 

  59. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. 7(4), 857–885 (2014). https://doi.org/10.3934/dcdss.2014.7.857

    Article  MathSciNet  MATH  Google Scholar 

  60. Vieira, N.: Fischer Decomposition and Cauchy-Kovalevskaya extension in fractional Clifford analysis: the Riemann-Liouville case. Proc. Edinb. Math. Soc. 60(1), 251–272 (2017). https://doi.org/10.1017/S0013091516000109

    Article  MathSciNet  MATH  Google Scholar 

  61. Závada, P.J.: Relativistic wave equations with fractional derivatives and pseudodifferential operators. J. Appl. Math. 2(4), 163–197 (2002). https://doi.org/10.1155/S1110757X02110102

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhou, Y.: Fractional Evolution Equations and Inclusions. Analysis and Control. Elsevier & Academic Press (2015)

    Google Scholar 

  63. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E 76(2), #021116 (2007). https://doi.org/10.1103/PhysRevE.76.021116

Download references

Acknowledgements

First and third authors were supported by the Nazarbayev University Program 20122022CRP1601. The first and second authors were supported by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations and by the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021). MR is also supported by EPSRC grant EP/R003025/2 and FWO Senior Research Grant G011522N. This research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant number BR21882172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel E. Restrepo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo, J.E., Ruzhansky, M. & Suragan, D. Generalized fractional Dirac type operators. Fract Calc Appl Anal 26, 2720–2756 (2023). https://doi.org/10.1007/s13540-023-00209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00209-5

Keywords

Mathematics Subject Classification

Navigation