Skip to main content
Log in

Mellin definition of the fractional Laplacian

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

It is known that at least ten equivalent definitions of the fractional Laplacian exist in an unbounded domain. Here we derive a further equivalent definition that is based on the Mellin transform and it can be used when the fractional Laplacian is applied to radial functions. The main finding is tested in the case of the space-fractional diffusion equation. The one-dimensional case is also considered, such that the Mellin transform of the Riesz (namely the symmetric Riesz–Feller) fractional derivative is established. This one-dimensional result corrects an existing formula in literature. Further results for the Riesz fractional derivative are obtained when it is applied to symmetric functions, in particular its relation with the Caputo and the Riemann–Liouville fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardaro, C., Butzer, P.L., Mantellini, I.: The foundations of fractional calculus in the Mellin transform setting with applications. J. Fourier Anal. Appl. 21, 961–1017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayın, S.Ş: Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 57, 123501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 35(7), 368–370 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochner, S., Chadrasekharan, K.: Fourier Transforms, Annals of Mathematics Studies, vol. 19. Princeton University Press, Princeton, N. J. (1949)

  5. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  6. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Switzerland (2016)

  7. Cai, M., Li, C.P.: On Riesz derivative. Fract. Calc. Appl. Anal. 22(2), 287–301 (2019). https://doi.org/10.1515/fca-2019-0019

    Article  MathSciNet  MATH  Google Scholar 

  8. Chechkin, A.V., Metzler, R., Klafter, J., Gonchar, V.Y.: Introduction to the theory of Lévy flights. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport: Foundations and Applications, chap. 5, pp. 129–162. Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim (2008)

  9. Cusimano, N., Del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56, 1243–1272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Garrappa, R., Giusti, A., Stynes, M.: Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 23(3), 610–634 (2020). https://doi.org/10.1515/fca-2020-0032

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Kiryakova, V., Luchko, Y., Tenreiro Machado, J.A., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107, 3245–3270 (2022)

    Article  Google Scholar 

  12. Dipierro, S., Savin, O., Valdinoci, E.: All functions are locally \(s\)-harmonic up to a small error. J. Eur. Math. Soc. 19(4), 957–966 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dipierro, S., Savin, O., Valdinoci, E.: Local approximation of arbitrary functions by solutions of nonlocal equations. J. Geom. Anal. 29, 1428–1455 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duo, S., Wang, H., Zhang, Y.: A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete Contin. Dyn. Syst., Ser. B 24(1), 231–256 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Dyda, B., Kuznetsov, A., Kwásnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. In: Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), pp. 73–81. Lund (1952). Tome suppl. dédié à M. Riesz

  17. Gorenflo, R., Iskenderov, A., Luchko, Y.: Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3(1), 75–86 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Hanyga, A.: Multidimensional solutions of space-fractional diffusion equations. Proc. R. Soc. Lond. A 457, 2993–3005 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hanyga, A.: A comment on a controversial issue: a generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 23(1), 211–223 (2020). https://doi.org/10.1515/fca-2020-0008

    Article  MathSciNet  MATH  Google Scholar 

  21. Hilfer, R.: Experimental implications of Bochner-Lévy-Riesz diffusion. Fract. Calc. Appl. Anal. 18(2), 333–341 (2015). https://doi.org/10.1515/fca-2015-0022

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilfer, R., Luchko, Y.: Desiderata for fractional derivatives and integrals. Mathematics 7, 149 (2019)

    Article  Google Scholar 

  23. Khan, T.U., Khan, M.A., Chu, Y.: A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation. Results Phys. 22, 103953 (2021)

    Article  Google Scholar 

  24. Klafter, J., Sokolov, I.M.: First Steps in Random Walks. From Tools to Applications.Oxford University Press, Oxford (2011)

  25. Krylov, N.V.: All functions are locally \(s\)-harmonic up to a small error. J. Funct. Anal. 277, 2728–2733 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kwásnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  MATH  Google Scholar 

  27. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luchko, Y.: General fractional integrals and derivatives of arbitrary order. Symmetry 13, 755 (2021)

    Article  Google Scholar 

  29. Luchko, Y.: General fractional integrals and derivatives with the Sonine kernels. Mathematics 9, 594 (2021)

    Article  Google Scholar 

  30. Luchko, Y.: Operational calculus for the general fractional derivative and its applications. Fract. Calc. Appl. Anal. 24(2), 338–375 (2021). https://doi.org/10.1515/fca-2021-0016

    Article  MathSciNet  MATH  Google Scholar 

  31. Luchko, Y., Kiryakova, V.: The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 16(2), 405–430 (2013). https://doi.org/10.2478/s13540-013-0025-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6(4), 441–459 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Marichev, O.I.: Handbook of Integral Transforms of Higher Trascendental Functions: Theory and Algorithmic Tables. Ellis Horwood, Chichester (1983). [Translation from the Russian edition (1978)]

  35. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter (2012)

  36. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Gen. 37(31), R161–R208 (2004)

    Article  MATH  Google Scholar 

  38. Ormerod, N.: A theorem on Fourier transforms of radial functions. J. Math. Anal. Appl. 69, 559–562 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ortigueira, M.D.: Two-sided and regularised Riesz–Feller derivatives. Math. Meth. Appl. Sci. 44, 8057–8069 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ott, A., Bouchaud, J., Langevin, D., Urbach, W.: Anomalous diffusion in “living polymers’’: A genuine Lévy flight? Phys. Rev. Lett. 65, 2201–2204 (1990)

    Article  Google Scholar 

  41. Pagnini, G., Vitali, S.: Should I stay or should I go? Zero-size jumps in random walks for Lévy flights. Fract. Calc. Appl. Anal. 24(1), 137–167 (2021). https://doi.org/10.1515/fca-2021-0007

    Article  MathSciNet  MATH  Google Scholar 

  42. Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press (2001)

  43. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

  44. Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–222 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubin, B.: Fractional integrals and weakly singular integral equations of the first kind in the \(n\)-dimensional ball. J. Anal. Math. 63, 55–102 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rubin, B.: On some inversion formulas for Riesz potentials and \(k\)-plane transforms. Fract. Calc. Appl. Anal. 15(1), 34–43 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Samko, S.G.: A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1(3), 225–245 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. A: Math. 144(4), 831–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shlesinger, M.F., Klafter, J., Wong, Y.M.: Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27, 499–512 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 82. Princeton University Press, Princeton (1972)

  51. Stinga, P.R.: User’s guide to the fractional Laplacian and the method of semigroups. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, vol. 2, Fractional Differential Equations, pp. 235–266. De Gruyter, Berlin, Boston (2019)

  52. Südland, N., Baumann, G.: On the Mellin transforms of Dirac’s delta function, the Hausdorff dimension function, and the theorem by Mellin. Fract. Calc. Appl. Anal. 7, 409–420 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Südland, N., Volkmann, J., Kumar, D.: Applications to give an analytical solution to the Black Scholes equation. Integr. Trans. Spec. Funct. 30(3), 205–230 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tarasov, V.E.: General fractional calculus in multi-dimensional space: Riesz form. Mathematics 11, 1651 (2023)

    Article  Google Scholar 

  55. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)

  56. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Valdinoci, E.: All functions are (locally) \(s\)-harmonic (up to a small error) - and applications. In: Farina, A., Valdinoci, E. (eds.) Partial Differential Equations and Geometric Measure Theory, Lecture Notes in Mathematics, vol. 2211, pp. 197–214. Springer, Berlin (2018)

  58. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1952)

  59. Yakubovich, S.B., Luchko, Y.F.: The Hypergeometric Approach to Integral Transforms and Convolutions, Mathematics and Its Applications, vol. 287. Springer, Dordrecht (1994)

  60. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys 87, 843–530 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. F. Mainardi and Dr. S. Vitali for useful discussions and hints that are hidden in the lines of the present research. Moreover, M. Kwásnicki is acknowledged for pointing out in a private communication some results by B. Rubin who also is acknowledged for availability and providing the related papers, see, [15, 45]. GP is supported by the Basque Government through the BERC 2022–2025 program and by the Ministry of Science and Innovation: BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Pagnini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the kernel function \(\mathcal {E}(\xi )\) (3.20)

Appendix: Derivation of the kernel function \(\mathcal {E}(\xi )\) (3.20)

By using the rule \(\sin (\theta +\omega )=\sin \theta \cos \omega + \cos \theta \sin \omega \), formula (3.19) can be re-written as

$$\begin{aligned} \mathcal {M}\mathcal {E}(s)=\sin \left( \frac{\pi \alpha }{2}\right) \, \cot \left( \frac{\pi s}{2}\right) - \cos \left( \frac{\pi \alpha }{2}\right) \,, \end{aligned}$$

and then we want two functions \(\varphi _1(r)\) and \(\varphi _2(r)\) such that \(\mathcal {M}\varphi _1 = \cot (\pi s/2)\) and \(\mathcal {M}\varphi _2 = 1\).

By noting from [34, formula (2.24)] that

$$\begin{aligned} \int _0^\infty \frac{x^{s-1}}{1-x} \, dx = \pi \cot \pi s \,, \quad \Re (s) \in (0,1) \,, \end{aligned}$$

we have, after replacing \(x \rightarrow r^2\), the first pair

$$\begin{aligned} \mathcal {M}\varphi _1 (s)= \frac{\pi }{2} \cot \frac{\pi s}{2} \,, \quad \text {with} \quad \varphi _1(r)=\frac{1}{1-r^2} \,. \end{aligned}$$

Now, let \(\mathcal {M}^{-1}\) be the Mellin inverse transformation then for a given function \(\psi (r)\) it holds \(\psi =\mathcal {M}^{-1}\mathcal {M}\psi \). Therefore, after the exchange of integration order we have

$$\begin{aligned} \psi (r)=\int _0^\infty \psi (y) \left\{ \mathcal {M}^{-1} y^s \right\} \frac{dy}{y} \,. \end{aligned}$$

This integral can be understood as a Mellin convolution integral where by definition \(\mathcal {M}^{-1} y^s = q(r/y)\) and, by using the properties of the delta-function, it holds \(q(z)=z \delta (z-1)\) with \(z=r/y\). Function q(r/y) is consistent with \(\mathcal {M}q = y^s\). Thus, by setting \(y=1\), we have also the second pair

$$\begin{aligned} \mathcal {M}\varphi _2(s)=1 \,, \quad \text {with} \quad \varphi _2(r)=r\delta (r-1) \,. \end{aligned}$$

Finally it results

$$\begin{aligned} \mathcal {M}\mathcal {E}(s)= \frac{2}{\pi }\sin \left( \frac{\pi \alpha }{2}\right) \mathcal {M}\varphi _1(s) - \cos \left( \frac{\pi \alpha }{2}\right) \mathcal {M}\varphi _2(s) \,, \quad \Re (s) \in (0,1) \,, \end{aligned}$$

from which formula (3.20) follows.

However, also setting \(\mathcal {M}^{-1} y^s = q^*(r/y)= \delta (r/y-1)\) is appropriate for solving the integral through properties of delta-function and it is consistent with the Mellin convolution interpretation and with formula \(\mathcal {M}q^*=y^s\). Thus, in our case, by setting \(y=1\) another suitable choice for function \(\varphi _2(r)\) is \(\varphi _2(r)=\delta (r-1)\). Moreover, by disregarding the Mellin convolution interpretation, also setting \(\mathcal {M}^{-1} y^s = q'(r,y)=y \delta (r-y)\) or \(\mathcal {M}^{-1} y^s = q{''}(r,y)=r \delta (r-y)\) is appropriate and consistent with the formula \(\mathcal {M}q'=\mathcal {M}q{''}=y^s\). Actually, this procedure does not solve the ambiguity emerging from different rearrangements of the delta-function like \(a\delta (r-a)\) and \(r\delta (r-a)\), with \(a>0\), that provide the same Mellin transform. More extensive analysis on the Mellin transform and delta-function are available in literature [52, 53].

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnini, G., Runfola, C. Mellin definition of the fractional Laplacian. Fract Calc Appl Anal 26, 2101–2117 (2023). https://doi.org/10.1007/s13540-023-00190-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00190-z

Keywords

Mathematics Subject Classification

Navigation