Skip to main content
Log in

The Cauchy problem and distribution of local fluctuations of one Riesz gravitational field

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the class of discontinuous unbounded initial functions with an integrable singularity, we consider the Cauchy problem for the pseudodifferential equation of local action of moving objects in the corresponding Riesz gravitational field. The fundamental solution to this problem is the Cauchy probability distribution of the force of local interaction between these objects. An explicit form of this solution is obtained, and the correct solvability of this problem is established. In this case, the form of the classical solution of the Cauchy problem is found, and the properties of its smoothness and behavior at infinity are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agekyan, T.A.: Probability Theory for Astronomers and Physicists. Nauka, Moscow (1974) (in Russian)

  2. Bucur, C., Valdinoci, E.: Non-local Diffusion and Applications. Part of Lecture Notes of the Unione Matematica Italiana, Ser. UMILN 20, Springer (2016). https://doi.org/10.1007/978-3-319-28739-3

  3. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263–273 (1960)

    Article  MathSciNet  Google Scholar 

  4. Cauchy, A.: Oeuvres complètes d’Augustin Cauchy. Cambridge Library Collection-Mathematics, Ser. 1, Vol. 1, Cambridge University Press (2009) (in French)

  5. Chandrasekhar, S.: Stohastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)

    Article  Google Scholar 

  6. Drin’, Ya.M., Eidelman, S.D.: Necessary and sufficient conditions for stabilization of solutions of the Cauchy problem for parabolic pseudo-differential equations. In: Approximate Methods of Mathematical Analysis, pp. 60–69, Kiev Gos. Ped. Inst., Kiev (1974) (in Russian)

  7. Drin’, Ya.M.: Investigation of a class of parabolic pseudo-differential operators on classes of Hölder continuous functions. Dopovidi AN Ukr. SSR. Ser. A. (1), 19–22 (1974) (in Ukrainian)

  8. Eidelman, S.D., Ivasyshen, S.D., Kochubei, A.N.: Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. Operator Theory: Adv. and Appl. 152, Birkhäuser, Basel (2004)

  9. Fedoryuk, M.V.: Asymptotic properties of Green’s function of a parabolic pseudodifferential equation. Diff. Equations 14, 923–927 (1978)

    MATH  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and its Applications. John Wiley & Sons, Hoboken (1968)

    MATH  Google Scholar 

  11. Gel’fand, I.M., Shilov, G.E.: Spaces of Basic and Generalized Functions. Gos. Izd. Fiz. Mat. Lit, Moscow (1958) (in Russian)

  12. Holtsmark, J.: Über die verbreiterung von spektrallinier. Annalen der Physik 58, 577–630 (1919) (in German)

  13. Kac, M.: Probability and Related Topics in Physical Sciences. Mir, Moscow (1965) (in Russian)

  14. Kao, C., Lou, Y., Shen, W.: Random dispersal vs. non-local dispersal. Discrete Contin. Dyn. Syst. 26(2), 551–596 (2010). https://doi.org/10.3934/dcds.2010.26.551

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kochubei, A.N.: Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes. Math. USSR Izvestiya 33, 233–259 (1989)

    Article  MathSciNet  Google Scholar 

  17. Kwasnicki, M.: Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  MATH  Google Scholar 

  18. Lévy, P.: Calcul des probabilities. Gauthier-Villars et Cie, Paris (1925)

    MATH  Google Scholar 

  19. Li, C., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019). https://doi.org/10.1137/1.9781611975888

  20. Li, G., Reis, S.D., Moreira, A.A., Havlin, S., Stanley, H.E., Andrade, J.S.: Towards design principles for optimal transport networks. Phys. Rev. Lett. 104, 201–205 (2010). https://doi.org/10.1103/PhysRevLett.104.018701

    Article  Google Scholar 

  21. Litovchenko, V.A.: Cauchy problem with Riesz operator of fractional differentiation. Ukr. Math. J. 57, 1937–1956 (2005). https://doi.org/10.1007/s11253-006-0040-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Litovchenko, V.A.: The Cauchy problem for one class of parabolic pseudodifferential systems with nonsmooth symbols. Sib. Math. J. 49, 300–316 (2008). https://doi.org/10.1007/s11202-008-0030-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Litovchenko, V.A.: Pseudodifferential equation of fluctuations of nonstationary gravitational fields. Journal of Mathematics 2021, 21–28 (2021). https://doi.org/10.1155/2021/6629780

    Article  MathSciNet  MATH  Google Scholar 

  24. Mandelbrot, B.: The Pareto-Lévy law and the distribution of income. Internat. Econ. Rev. 1, 79–106 (1960)

    Article  Google Scholar 

  25. Massaccesi, A., Valdinoci, E.: Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol. 74(1–2), 113–147 (2017). https://doi.org/10.1007/s00285-016-1019-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Montefusco, E., Pellacci, B., Verzini, G.: Fractional diffusion with Neumann boundary conditions: the logistic equation. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2175–2202 (2013). https://doi.org/10.3934/dcdsb.2013.18.2175

    Article  MathSciNet  MATH  Google Scholar 

  27. Nikiforov, A.F., Novikov, V.G., Uvarov, V.B.: Quantum-statistical Models of Hot Dense Matter Methods for Computation Opacity and Equation of State. Birkhäuser Verlag, Basel-Boston-Berlin (2005). https://doi.org/10.1007/b137687

  28. Polya, G.: Herleitung des Gausschen fehlergesetzes aus einer funktionalgleichung. Math. Z. 18, 96–108 (1923) (in German)

  29. Reynolds, A., Rhodes, C.: The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90(4), 877–887 (2009). https://doi.org/10.1890/08-0153.1

    Article  Google Scholar 

  30. Riesz, M.: Potentiels de divers ordres et leurs fonctions de Green. C. R. Congrés Intern. Math. Oslo 2, 62–63 (1936) (in French)

  31. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publ, Yverdon (1993)

    MATH  Google Scholar 

  32. Schneider, W.R.: Stable distributions: Fox function representation and generalization. Lecture Notes Phys. 262, 497–511 (1986)

    Article  MathSciNet  Google Scholar 

  33. Sobel’man, I.I.: An introduction to the theory of atomic spectra. In: International Series in Natural Philosophy, Vol. 40, 1–612, Elsevier, Amsterdam (1972). https://doi.org/10.1016/C2013-0-02394-8

  34. Zhou, Y., Wang, J., Zhang, L. Basic Theory of Fractional Differential Equations. \(2^{nd}\) Ed. World Scientific, Singapore (2016). https://doi.org/10.1142/10238

  35. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E. 76(2), 11–34 (2007). https://doi.org/10.1103/PhysRevE.76.021116

    Article  MathSciNet  Google Scholar 

  36. Zolotarev, V.M.: One-dimensional Stable Distributions. Nauka, Moscow (1983) (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav Litovchenko.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litovchenko, V. The Cauchy problem and distribution of local fluctuations of one Riesz gravitational field. Fract Calc Appl Anal 25, 668–686 (2022). https://doi.org/10.1007/s13540-022-00034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00034-2

Keywords

Mathematics Subject Classification

Navigation