Skip to main content
Log in

ZnO Nanoparticles Synthesized by Precipitation Method for Solar-Driven Photodegradation of Methylene Blue Dye and Its Potential as an Anticancer Agent

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This work presents the study on the synthesis of ZnO nanoparticles (NPs) and their photocatalytic and anticancer activity. ZnO NPs were synthesized by a simple precipitation method in the presence of anionic surfactant sodium dodecyl sulphate (SDS). Two different zinc precursors were used, namely, zinc acetate dihydrate and zinc nitrate hexahydrate, and sodium hydroxide was used as a precipitating agent. The synthesized samples were characterized by various techniques for invesgating their structural, optical, and morphological properties. Identical wurtzite hexagonal structure was confirmed for the samples from XRD pattern and the Raman spectroscopy. As determined by the HR-TEM analysis, the samples’ typical particle size is in the nanoscale. The optical band gap of ZnO NPs, as estimated from UV–VIS absorption spectra, is 2.607 eV for acetate precursor and 2.915 eV for nitrate precursor. The defect concentration in the samples has been probed using PL analysis. The photocatalytic activity of synthesized NPs was studied for organic dye (methylene blue — MB) in an aqueous medium and was compared to that of commercial photocatalyst TiO2 NPs. The potential of synthesized NPs as an anticancer agent was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, G. Olsson, Desalination 305, 1 (2012)

    Article  Google Scholar 

  2. R. Das, OAlib 01, 1 (2014)

    Article  Google Scholar 

  3. Z. Carmen, S. Daniela, Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview, Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update (2012)

  4. J. Miao, Z. Jia, H.B. Lu, D. Habibi, L.C. Zhang, J. Taiwan Inst. Chem. Eng. 45, 1636 (2014)

    Article  Google Scholar 

  5. K. Enayatzamir, H.A. Alikhani, B. Yakhchali, F. Tabandeh, S. Rodríguez-Couto, Environ. Sci. Pollut. Res. 17, 145 (2010)

    Article  Google Scholar 

  6. Y. Al-Ani, Y. Li, J Taiwan Inst Chem Eng 43, 942 (2012)

    Article  Google Scholar 

  7. I. Moraitopoulos, Z. Ioannou, J. Simitzis, World Academy of Science, Engineering and Technology. Int. J. Chem. Mole. Nuclear Mater. Metall. Eng. 3, 553 (2009)

    Google Scholar 

  8. P. Sanchis-Perucho, D. Aguado, J. Ferrer, A. Seco, Á. Robles, Membranes (Basel) 12, (2022)

  9. A.R. Amani-Ghadim, S. Aber, A. Olad, H. Ashassi-Sorkhabi, Chem. Eng. Process. 64, 68 (2013)

    Article  Google Scholar 

  10. V.v Goncharuk, D.D. Kucheruk, V.M. Kochkodan, V.P. Badekha, DESALINATION Removal of Organic Substances from Aqueous Solutions by Reagent Enhanced Reverse Osmosis (2002)

  11. W.-C. Chan, T.-P. Fu, Adsorption/ion-exchange behavior between a water-insoluble cationic starch and 2-chlorophenol in aqueous solutions. J. Appl. Polym. Sci., 67: 1085-1092. (1998). https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1085::AID-APP16>3.0.CO;2-#

  12. T. Zhang, X. Wang, X. Zhang, Int. J. Photoenergy 2014, (2014)

  13. M. Muruganandham, R.P.S. Suri, S. Jafari, M. Sillanpää, G. J. Lee, J.J. Wu, M. Swaminathan, Int. J. Photoenergy 2014, (2014)

  14. F.E. Titchou, H. Zazou, H. Afanga, J. el Gaayda, R. Ait Akbour, P.V. Nidheesh, M. Hamdani, Chemical Engineering and Processing - Process Intensification 169, (2021)

  15. M.A. Oturan, J.J. Aaron, Crit. Rev. Environ. Sci. Technol. 44, 2577 (2014)

    Article  Google Scholar 

  16. H. Olvera Vargas, Study on the fate of pharmaceuticals in aqueous media: synthesis, characterization and detection of biotic and abiotic transformation products using electrochemical advanced oxidation processes and bioconversions (2014).

  17. A. Sennaoui, S. Alahiane, F. Sakr, A. Assabbane, E.H.A. Addi, M. Hamdani, Port. Electrochim. Acta 36, 163 (2018)

    Article  Google Scholar 

  18. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812 (2002)

    Article  Google Scholar 

  19. C. Karunakaran, S. Senthilvelan, J. Mol. Catal. A Chem. 233, 1 (2005)

    Article  Google Scholar 

  20. S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, J. Chem. Technol. Biotechnol. 86, 1130 (2011)

    Article  Google Scholar 

  21. C. Karunakaran, R. Dhanalakshmi, Sol. Energy Mater. Sol. Cells 92, 1315 (2008)

    Article  Google Scholar 

  22. R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, in Advanced oxidation processes for wastewater treatment: emerging green chemical technology (Elsevier Inc., 2018), pp. 135–175.

  23. K. Mondal, A. Sharma, Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials—a mini-review (2015)

  24. D.V. Wellia, Y. Kusumawati, L.J. Diguna, M.I. Amal, in (2017), pp. 1–17

  25. C.A.K. Gouv, Ea, F. Wypych, S.G. Moraes, N. Dur, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 40(4), 433-440 (2000)

  26. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, E. Pelizzetti, Toxicol. Environ. Chem. 16, 89 (1988)

    Article  Google Scholar 

  27. A. Akbar, M.B. Sadiq, I. Ali, N. Muhammad, Z. Rehman, M.N. Khan, J. Muhammad, S.A. Khan, F.U. Rehman, A.K. Anal, Biocatal Agric Biotechnol 17, 36 (2019)

    Article  Google Scholar 

  28. G. Bisht, S. Rayamajhi, Nanobiomedicine (Rij) 3, (2016)

  29. A. Kolodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  ADS  Google Scholar 

  30. C. Shen, S.A. James, M.D. de jonge, T.W. Turney, P.F.A. Wright, B.N. Feltis, Toxicological Sciences 136, 120 (2013)

  31. N. Scarisoreanu, D.G. Matei, G. Dinescu, G. Epurescu, C. Ghica, L.C. Nistor, M. Dinescu, Appl. Surf. Sci. 247, 518 (2005)

    Article  ADS  Google Scholar 

  32. Y.H. Ni, X.W. Wei, J.M. Hong, Y. Ye, Mater Sci Eng B Solid State Mater Adv Technol 121, 42 (2005)

    Article  Google Scholar 

  33. S.-S. Chang, S. O. Yoon, H. J. Park, A. Sakai, Luminescence properties of Zn nanowires prepared by electrochemical etching, Mater Lett. 53(6), 432-436 (2002)

  34. M. Ristić, S. Musić, M. Ivanda, S. Popović, J. Alloy. Compd. 397, (2005)

  35. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  Google Scholar 

  36. R.C. Wang, C.C. Tsai, Appl. Phys. A Mater. Sci. Process. 94, 241 (2009)

    Article  ADS  Google Scholar 

  37. A. Khorsand Zak, W.H.A. Majid, H.Z. Wang, R. Yousefi, A. Moradi Golsheikh, Z.F. Ren, Ultrason. Sonochem. 20, 395 (2013)

  38. M. Kooti, A. Naghdi Sedeh, J. Chem. (2013)

  39. A. Shetty, K.K. Nanda, Appl. Phys. A Mater. Sci. Process. 109, 151 (2012)

    Article  ADS  Google Scholar 

  40. O. Singh, N. Kohli, R.C. Singh, Sens Actuators B Chem 178, 149 (2013)

    Article  Google Scholar 

  41. R. Suntako, Effect of zinc oxide nanoparticles synthesized by a precipitation method on mechanical and morphological properties of the CR foam (2015)

  42. N.B. Mahmood, F.R. Saeed, K.R. Gbashi, U.S. Mahmood, Mater. Lett. X 13, (2022)

  43. K. Nejati, Z. Rezvani, R. Pakizevand, Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shape (2011)

  44. P. Thakor, R.B. Subramanian, S.S. Thakkar, A. Ray, V.R. Thakkar, Biomed. Pharmacother. 92, 491 (2017)

    Article  Google Scholar 

  45. R.K. Giri, S. Chaki, A.J. Khimani, Y.H. Vaidya, P. Thakor, A.B. Thakkar, S.J. Pandya, M.P. Deshpande, ACS Omega 6, 26533 (2021)

    Article  Google Scholar 

  46. S. Siva Kumar, P. Venkateswarlu, V. Ranga Rao, G. Nageswara Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles (2013)

  47. T.C. Damen, S.P.S. Pqrtq, and B (Raman effect in zinc oxide (Academic Press Inc, TELL Bel, 1966)

    Google Scholar 

  48. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A.L. Bassi, Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 115, 073508 (2014)

  49. M. Silambarasan, Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles growth and characterization of metal doped organic crystals. View Project Graphene Synthesis from Palm Oil via TCVD View Project (2015)

  50. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B Condens. Matter. Mater. Phys. 75, (2007)

  51. A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, S.M. Hosseini, Ceram. Int. 37, 393 (2011)

    Article  Google Scholar 

  52. Y. Zhao, C. Eley, J. Hu, J.S. Foord, L. Ye, H. He, S.C.E. Tsang, Angew. Chem. 124, 3912 (2012)

    Article  ADS  Google Scholar 

  53. S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Opt. Mater. (Amst) 53, 134 (2016)

    Article  ADS  Google Scholar 

  54. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Superlattices Microstruct 85, 7 (2015)

    Article  ADS  Google Scholar 

  55. S. Swetha, R. Geetha Balakrishna, Cuihua Xuebao/Chinese J Catal 32, 789 (2011)

  56. S. Baruah, R. Faizur Rafique, J. Dutta, Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures (2008)

  57. V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Adv. Funct. Mater. 21, 3744 (2011)

    Article  Google Scholar 

  58. A.K. Ramasami, T.N. Ravishankar, G. Nagaraju, T. Ramakrishnappa, S.R. Teixeira, R.G. Balakrishna, Bull. Mater. Sci. 40, 345 (2017)

    Article  Google Scholar 

  59. K. Boubaker, Eur. Phys. J. Plus 126, 1 (2011)

    Article  Google Scholar 

  60. T. Chitradevi, A. Jestin Lenus, N. Victor Jaya, Mater. Res. Express. 7, (2019)

  61. V. Kumar, V. Kumar, S. Som, A. Yousif, N. Singh, O.M. Ntwaeaborwa, A. Kapoor, H.C. Swart, J. Colloid. Interface Sci. 428, 8 (2014)

    Article  ADS  Google Scholar 

  62. A.A. Othman, M.A. Osman, E.M.M. Ibrahim, M.A. Ali, Ceram. Int. 43, 527 (2017)

    Article  Google Scholar 

  63. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  Google Scholar 

  64. M. Goswami, N.C. Adhikary, S. Bhattacharjee, Optik (Stuttg) 158, 1006 (2018)

    Article  ADS  Google Scholar 

  65. A.K. Ramasami, H. Raja Naika, H. Nagabhushana, T. Ramakrishnappa, G.R. Balakrishna, G. Nagaraju, Mater. Charact. 99, 266 (2015)

  66. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  67. D. Raoufi, J. Lumin. 134, 213 (2013)

    Article  Google Scholar 

  68. S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloy. Compd. 499, 231 (2010)

    Article  Google Scholar 

  69. M.K. Debanath, S. Karmakar, Mater. Lett. 111, 116 (2013)

    Article  Google Scholar 

  70. N. Laouedj, J. Chem. Eng. Process. Technol. 02, (2011)

  71. N. Babitha, L.S. Priya, S.R. Christy, A. Manikandan, A. Dinesh, M. Durka, S. Arunadevi, J. Nanosci. Nanotechnol. 19, 2888 (2018)

    Article  Google Scholar 

  72. G. Hitkari, S. Singh, G. Pandey, Nano-structures and nano-objects 12, 1 (2017)

    Article  Google Scholar 

  73. L. Hou, L. Yang, J. Li, J. Tan, C. Yuan, J. Anal. Methods Chem. 1, (2012)

  74. O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Chem. Eng. J. 164, 77 (2010)

    Article  Google Scholar 

  75. A. Suguna, S. Prabhu, M. Selvaraj, M. Geerthana, A. Silambarasan, M. Navaneethan, R. Ramesh, C. Sridevi, J. Mater. Sci. Mater. Electron. 33, 8868 (2022)

    Google Scholar 

  76. O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, P.A. Luque, J. Mol. Struct. 1147, 1 (2017)

    Article  ADS  Google Scholar 

  77. W.C. Lin, W.D. Yang, S.Y. Jheng, J. Taiwan Inst. Chem. Eng. 43, 269 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. S. H. Chaki and Dr. J. S. Gandhi, Department of Physics, Sardar Patel University, for XRD measurements; Prof. K. R. Surati and Mr. Jaydip Solanki, Department of Chemistry, Sardar Patel University, for photoluminescence measurements; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, for providing cell culture facilities; UGC-India for UGC FRSP Start-up grant for UV-Vis spectrophotometer; DST-FIST (2017) for providing Raman spectroscopy facility to the department; and Knowledge Consortium of Gujarat (KCG) for providing SHODH Scholarship (Student Reference No.: 202001640041).

Author information

Authors and Affiliations

Authors

Contributions

Paras Lad: conceptualization, methodology, data analysis, writing — original draft. Vidhi Pathak: methodology, data analysis. Anjali B. Thakkar: cytotoxicity assay. Parth Thakor: cytotoxicity assay, writing — original draft. M. P. Deshpande: Raman spectroscopy measurement and analysis. Swati Pandya: conceptualization, UV–VIS spectroscopy measurements and analysis, writing — review and editing.

Corresponding authors

Correspondence to Paras Lad or Swati Pandya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad, P., Pathak, V., Thakkar, A.B. et al. ZnO Nanoparticles Synthesized by Precipitation Method for Solar-Driven Photodegradation of Methylene Blue Dye and Its Potential as an Anticancer Agent. Braz J Phys 53, 63 (2023). https://doi.org/10.1007/s13538-023-01278-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01278-w

Keywords

Navigation