Skip to main content
Log in

Spectroscopic Studies of CdS Nanocrystalline Thin Films Synthesized by Sol–Gel Spin Coating Technique for Optoelectronic Application: Influence of Co-Doping

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the current study, pristine and Co@CdS nanocrystalline thin films were fabricated on glass substrates by sol–gel spin coating technique. The structural and optical properties of fabricated films were systematically evaluated. The fabricated films are polycrystalline in nature and have a cubic structure. An investigation of the structure reveals that Co ions have been fully integrated into the CdS lattice. Crystallite size, microstrain, and lattice parameters were calculated using the Debye–Scherrer formula. The crystallite size of the pristine CdS thin films was observed to be 12.05 nm and decreased to 9.73 nm with Co-doping. Also, the microstrain and dislocation density of the films increased with an increase in Co-doping concentration. The 1-LO and 2-LO Raman peaks were found to be shifted toward the lower frequency side. Transmittance, refractive index, and extinction coefficient were examined to identify the changes in optical characteristics caused by Co-doping. The doping process improves the energy bandgap of the CdS nanocrystalline thin film which was in the range of 2.46 to 2.56 eV. The doping also alters the photoluminescence characteristics of CdS, leading to a change in peak toward shorter wavelengths for Co@CdS. The RMS roughness and average grain size of the films decreased with doping. These findings suggest that synthesized films could be a potential material used for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Schuler, M. Python, M. Valle Del Olmo, E. De Chambrier, Sol. Energy 81, 1159–1165 (2007)

    Article  ADS  Google Scholar 

  2. S.C. Tjong, H. Chen, Mater. Sci. Eng. R. 45(2), 1–88 (2004)

    Article  Google Scholar 

  3. K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12(1), 53–59 (2012)

    Article  ADS  Google Scholar 

  4. D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, J. Electrochem. Soc. 151(6), 428–35 (2004)

  5. T. Gao, T.H. Wang, J. Phys. Chem. B 108(52), 20045–20049 (2004)

    Article  Google Scholar 

  6. W. Lee, N.P. Dasgupta, H.J. Jung, J.R. Lee, R. Sinclair, F.B. Prinz, Nanotechnology 21, 485402 (2010)

    Article  Google Scholar 

  7. S. Pence, E. Varner, C.W. Bastes Jr, Mater. Lett. 23, 13–16x (2010)

  8. I. Plaza, G. González-Díaz, F. Sánchez-Quesada, M. Rodríguez-Vidal, Thin Solid Films 120, 31–36 (2010)

    Article  Google Scholar 

  9. S. Petillona, A. Dinger, M. Grün, M. Hetterich, V. Kazukauskas, C. Klingshirn, J. Cryst. Growth 201–202, 453–456 (1999)

    Article  ADS  Google Scholar 

  10. M.S. Munirah, K.A. Aziz, S.A. Rahman, Z.R. Khan, Mat. Sci. Semicon. Proc. 16, 1894–1898 (2013)

  11. I. Rathinamala, J. Pandiarajan, N. Jeyakumaran, N. Prithivikumaran, Int. J. Thin. Film Sci. Tec. 3, 113–120 (2014)

    Article  Google Scholar 

  12. T. Chtouki, Y. El Kouari, B. Kulyk, A. Louardi, A. Rmili, H. Erguig, B. Elidrissi, Soumahoro, B. Sahraoui, J. Alloys. Compd. 696,1292–1297 (2017)

  13. R. Kumar, R. Das, M. Gupta, V. Ganesan, Superlattice. Microst. 59, 29–37 (2013)

  14. M. Qorbani, N. Naseri, O. Moradlou, R. Azimirad, A.Z. Moshfegh, Appl. Catal. 162, 210–216 (2015)

    Article  Google Scholar 

  15. R. Das, R. Kumar, Mater. Res. Bull. 47, 239–246 (2012)

    Article  Google Scholar 

  16. R. Das, R. Kumar, J. Mater. Sci.: Mater. Electron. 24, 697–703 (2013)

    Google Scholar 

  17. P.K. Sahu, R. Das, R. Lalwani, J. Mater. Sci.: Mater. Electron. 28, 18296–18306 (2017)

    Google Scholar 

  18. A. Oudhia, N. Shukla, P. Bose, R. Lalwani, A. Choudhary, Nano-Struct. Nano-Objects. 7, 69–74 (2016)

    Article  Google Scholar 

  19. P. Velusamy, R. Xing, R.R. Babu, E. Elangovan, J. Viegas, S. Liu, M. Sridharan, Sens. Actuators. B. Chem. 297, 126718 (2019)

  20. J. Trajić, M. Gilić, N. Romčević, M. Romčević, G. Stanišić, B. Hadžić, M. Petrović, Y.S. Yahia, Sci. Sinter. 47, 145–152 (2015)

    Article  Google Scholar 

  21. F. Foucher, G. Lopez-Reyes, N. Bost, F. Rull-Perez, P. Rüßmann, F. Westall, J. Raman. Spectrosc. 44(6), 916–925 (2013)

    Article  ADS  Google Scholar 

  22. Y. Peng, X. Hu, X. Xu, X. Chen, J. Peng, J. Han, S. Dimitrijev, Opt. Mater. Express. 6, 2725–2733 (2016)

  23. R.R. Prabhu, M. Abdul Khadar, Bull. Mater. Sci. 31(3), 511–515 (2008)

  24. R. Das, R. Kumar, J Mater. Sci. 43, 5972–5976 (2008)

  25. K.R. Gbashi, M.A. Muhi, A.A. Jabbar, N.B. Mahmood, R.F. Hasan, App. Phy. A. 126, 628 (2020)

  26. P.K. Sahu, R. Das, R. Lalwani, App. Phy. A 124, 665 (2018)

    Article  ADS  Google Scholar 

  27. N.M. Ravindra, S. Auluck, V.K. Srivastava, Phys. State Solid B 93, k155–k160 (1979)

    Article  ADS  Google Scholar 

  28. P.J.L. Herve, L.K.J. Vandamme, J. Appl. Phys. 77, 5476–5477 (1995)

    Article  ADS  Google Scholar 

  29. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    Article  ADS  Google Scholar 

  30. J.A. Van Vechten, I. Phys, Rev. 182, 891–905 (1969)

    Google Scholar 

  31. D.K. Ghosh, L.K. Samanta, G.C. Bhar, Infrared Phys. 24, 34–47 (1984)

    Article  ADS  Google Scholar 

  32. G.A. Samara, Phys. Rev. B 27, 3494–3505 (1983)

    Article  ADS  Google Scholar 

  33. K.R. Gbashi, App. Phy. A 26, 275 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Bhilai Institute of Technology, Durg administration, is to be thanked for providing the authors with funding and lab space. Additionally, the authors would like to express their gratitude to the UGC-DAE Consortium for Scientific Research, Indore, India, for facilitating XRD and AFM facilities at their center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijlata Sharma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Lalwani, R. & Das, R. Spectroscopic Studies of CdS Nanocrystalline Thin Films Synthesized by Sol–Gel Spin Coating Technique for Optoelectronic Application: Influence of Co-Doping. Braz J Phys 53, 42 (2023). https://doi.org/10.1007/s13538-023-01257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01257-1

Keywords

Navigation