Skip to main content
Log in

Charmonium JPC = 1–– Decay in the C3P0 Model

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Widely applied to both light and heavy meson decay and standing as one of the most successful strong decay models is the \(^{3}P_{0}\) model, in which \(q\bar{q}\) pair production is the dominant mechanism. In the present, we use the bound-state corrected version of the \(^{3}P_{0}\), called the C\(^{3}P_{0}\) model, to calculate the decay widths of the charmonium \(J^{PC}=1^{--}\) states, nominally \(J/\psi\), \(\psi (2S)\), \(\psi (3770)\), \(\psi (4040)\), \(\psi (4160)\), \(\psi (4415)\) and \(\psi (4660)\) to several common channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J.J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974). E598 Collaboration

  2. J.E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974). SLAC-SP-017 Collaboration

  3. R.M. Baltrusaitis et al., Phys. Rev. D 33, 629–638 (1986)

    Article  ADS  Google Scholar 

  4. J.E. Gaiser et al., Phys. Rev. D 34, 711–721 (1986)

    Article  ADS  Google Scholar 

  5. S. Godfrey, S.L. Olsen, Annu. Rev. Nucl. Part. Sci. 58, 51 (2008)

    Article  ADS  Google Scholar 

  6. FAIR-PANDA, The panda experiment at the facility for antiproton and ion research in darmstadt (fair). https://panda.gsi.de/ (2020)

  7. R.M. Albuquerque, M. Nielsen, R.R. da Silva, Phys. Rev. D 84(2011)

    Article  ADS  Google Scholar 

  8. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 89(2014)

    Article  ADS  Google Scholar 

  9. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 58, 399 (2008)

    Article  ADS  Google Scholar 

  10. F.K. Guo, C. Hanhart, U.G. Meißner, Phys. Lett. B 665, 26 (2008)

    Article  ADS  Google Scholar 

  11. W. Zhi-Gang, Z. Xiao-Hong, Commun. Theor. Phys. 54, 323 (2010)

    Article  ADS  Google Scholar 

  12. P. Guo, A.P. Szczepaniak, G. Galata, A. Vassallo, E. Santopinto, Phys. Rev. D 78(2008)

    Article  ADS  Google Scholar 

  13. P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020). PDG - Particle Data Group

  14. D. Hadjimichef, G. Krein, S. Szpigel, J.S. da Veiga, Ann. Phys. 268, 105 (1998)

    Article  ADS  Google Scholar 

  15. D.T. da Silva, M.L.L. da Silva, J.N. de Quadros, D. Hadjimichef, Phys. Rev. D 78(2008)

    Article  ADS  Google Scholar 

  16. D. Hadjimichef, G. Krein, S. Szpigel, J.S. da Veiga, Phys. Lett. B 367, 317 (1996)

    Article  ADS  Google Scholar 

  17. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  18. S. Okubo, Phys. Lett. 5, 165 (1963)

    Article  ADS  Google Scholar 

  19. G. Zweig, CERN Preprints TH-401 (1964)

  20. G. Zweig, CERN Preprints TH-412 (1964)

  21. J. Iizuka, Prog. Theor. Phys. Suppl. 37/38, 21 (1966)

  22. T. Feldmann, P. Kroll, Phys. Rev. D 62(2000)

    Article  Google Scholar 

  23. T. Feldmann, P. Kroll, B. Stech, Phys. Rev. D 58(1998)

    Article  ADS  Google Scholar 

  24. B. Aubert et al., Phys. Rev. D 79, 092001 (2009). BABAR Collaboration

  25. A.L. Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 71, 397 (1977)

    Article  ADS  Google Scholar 

  26. A.L. Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 72, 57 (1977)

    Article  ADS  Google Scholar 

  27. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72(2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Hadjimichef.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Parameters

Appendix. Parameters

After the simulation the best \(J/\psi\) fit to the experimental data is achieved with \(\gamma =0.33\), \(\beta _{J/\psi }= 0.182\) GeV, \(\beta _\rho =0.55\) GeV, \(\beta _\pi = 0.55\) GeV, \(\beta _\omega = 0.328\) GeV, \(\beta _{\eta }= 0.348\) GeV, \(\beta _{\eta ^\prime }= 0.170\) GeV, \(\beta _K= 0.4\) GeV, \(\beta _{K^*}=0.315\) GeV, \(\beta _{\phi }=0.340\) GeV, \(\beta _{\phi _\Delta }=0.3\) GeV, \(\beta _{\omega _\Delta }=0.6\) GeV and \(\beta _{J/\psi _\Delta }=0.3\) GeV. These results and the experimental values are shown in the left part of Table 2.

The best \(\psi (2S)\) fit to the experimental data is achieved with \(\gamma =0.33\), \(\beta _{\psi }= 0.042\) GeV, \(\beta _\rho =0.55\) GeV, \(\beta _\pi = 0.55\) GeV, \(\beta _\omega = 0.7\) GeV, \(\beta _{\eta }= 0.7\) GeV, \(\beta _{\eta ^\prime }= 0.8\) GeV, \(\beta _K= 0.47\) GeV, \(\beta _{K^*}=0.8\) GeV, \(\beta _{\phi }=0.7\) GeV, \(\beta _{\phi _\Delta }=0.9\) GeV, \(\beta _{\omega _\Delta }=0.6\) GeV and \(\beta _{\psi _\Delta }=0.042\) GeV. These results and the experimental values are shown in the right part of Table 2.

The best \(\psi (3770)\) is \(\beta _{\psi (3770)} = 0.9\) GeV, \(\gamma =0.33\), \(\beta _\rho =0.105\) GeV, \(\beta _\pi = 0.86\) GeV, \(\beta _\omega = 0.22\) GeV, \(\beta _{\eta }= 0.7\) GeV, \(\beta _{\eta ^\prime }= 0.9\) GeV, \(\beta _K= 0.8\) GeV, \(\beta _{K^*}=0.175\) GeV, \(\beta _{\phi }=0.65\) GeV, \(\beta _{\phi _\Delta }=0.9\) GeV, \(\beta _{\omega _\Delta }=0.6\) GeV and \(\beta _{\psi _\Delta }=0.2\) GeV.

For the D channels a minor modification is observed in the parameters \(\beta _{\psi (3770)} = \beta _{\psi (4040)} = \beta _{\psi (4160)} = \beta _{\psi (4415)} = \beta _{\psi (4660)} = 0.5\) GeV and \(\beta _{D^*}=0.2\) GeV, \(\beta _D=0.6\) GeV, \(\beta _{D^{0\,*}}=\beta _{D^0}= 0.51\) GeV, \(\beta _{D_s} = \beta _{D^*_s} =0.53\) GeV ; \(\beta _{\phi _\Delta }=0.9\) GeV, \(\beta _{\omega _\Delta }=0.6\) GeV and \(\beta _{\psi _\Delta }=0.2\) GeV.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, A.A., Hassan, G.S., da Silva, D.T. et al. Charmonium JPC = 1–– Decay in the C3P0 Model. Braz J Phys 53, 27 (2023). https://doi.org/10.1007/s13538-022-01233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01233-1

Keywords

Navigation