Skip to main content

Advertisement

Log in

Hydrothermal Synthesis, Characterization, and Electrochemical Behaviour of Cobalt Oxide (Co3O4) Nanoparticles for Stable Electrode with Enhanced Supercapacitance

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The electrochemical performance of highly crystalline cobalt oxide (Co3O4) nanoparticles is described in this work using an oxalate-assisted hydrothermal synthesis in the presence of a natural surfactant. The Co3O4 nanoparticle has a cubic spinel crystal structure with a crystallite size of 39 nm as determined XRD analysis. FTIR and UV–vis spectrum methods are used to evaluate the optical and functional properties of the synthesized Co3O4 nanoparticles. Due to the quantum confinement effect, the UV–vis spectrum of Co3O4 nanoparticles shows a wide energy band gap of 4.78 eV, which confirms the semiconducting nature of Co3O4 nanoparticles. The excellent performance is attributable to the simple accessibility of the electrolyte as well as the porous poly-pyramidal shape, which enables Co3O4 nanoparticles’ volume expansion. In light of their charging and discharging behaviour, electrochemical examination of green chemical oxalate aided Co3O4 nanoparticles reveals remarkable super capacitance behaviour with rapid dissemination of electrolyte ions on the electrode. These findings discover that the hydrothermally synthesized Co3O4 nanoparticles are novel materials for making high-potential super capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data were confidential.

References

  1. R. Shi, G. Chen, W. Ma, D. Zhang, G. Qiu, X. Liu, Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra. Dalton Trans. 41(19), 5981–5987 (2012)

    Article  Google Scholar 

  2. Y. Ni, X. Ge, Z. Zhang, H. Liu, Z. Zhu, Qiang Ye, A simple reduction- oxidation route to prepare Co3O4 nanocrystals. Mater. Res. Bull. 36, 2383–2387 (2001)

    Article  Google Scholar 

  3. S. Mohan, M. Vellakkat, A. Aravind, U. Reka, Hydrothermal synthesis and characterization of zinc oxide nanoparticles of various shapes under different reaction conditions. Nano Express 1(3), 030028 (2020)

    Article  ADS  Google Scholar 

  4. S. Tanwar, D. Mathur, Hydrothermal synthesis and characterization of zinc oxide nanoplates. Materials Today: Proceedings 47, 4647–4651 (2021)

    Google Scholar 

  5. C. Priyadharsini, P. Anbarasan, V. Aroulmoji, V. Siva. Synthesize, characterization and electrochemical investigations of cobalt oxide nanoparticles to supercapacitor application. Aegaeum Journal. (2020)

  6. S. Farhadi, J. Safabakhsh, P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostructure Chem. 3(1), 1–9 (2013)

    Google Scholar 

  7. M.T. Makhlouf, B.M. Abu-Zied, T.H. Mansoure, Nanocrystalline Co3O4 fabricated via the combustion method. Met. Mater. Int. 19(3), 489–495 (2013)

    Article  Google Scholar 

  8. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 113(11), 4357–4361 (2009)

    Article  Google Scholar 

  9. H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3(7), 3794–3817 (2010)

    Article  ADS  Google Scholar 

  10. G. Durai, P. Kuppusami, T. Maiyalagan, M. Ahila, Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering: effect of different electrolytes. Ceram. Int. 45(14), 17120–17127 (2019)

    Article  Google Scholar 

  11. S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim. Acta 106, 500–505 (2013)

    Article  Google Scholar 

  12. M.Y. Nassar, I.S. Ahmed, Hydrothermal synthesis of cobalt carbonates using different counter ions: an efficient precursor to nano-sized cobalt oxide (Co3O4). Polyhedron 30(15), 2431–2437 (2011)

    Article  Google Scholar 

  13. Y. Liang, Y. Yang, Z. Hu, Y. Zhang, Z. Li, N. An, H. Wu, Three-dimensional cage-like Co3O4 structure constructed by nanowires for supercapacitor. Int. J. Electrochem. Sci. 11, 4092–4109 (2016)

    Article  Google Scholar 

  14. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y. Qian, One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108(42), 16401–16404 (2004)

    Article  Google Scholar 

  15. R. Heimböckel, F. Hoffmann, M. Fröba, Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Phys. Chem. Chem. Phys. 21(6), 3122–3133 (2019)

    Article  Google Scholar 

  16. Z. Seidov, M. Açıkgöz, S. Kazan, F. Mikailzade, Magnetic properties of Co3O4 polycrystal powder. Ceram. Int. 42(11), 12928–12931 (2016)

    Article  Google Scholar 

  17. I.A.Z. Al-Ogaidi, Camellia sinensis (green tea) mediated synthesis of zinc oxide nanoparticles and detect its antibacterial activity against Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii. Journal of Biotechnology Research Center 11(1), 34–40 (2017)

    Article  Google Scholar 

  18. M. Sivachidambaram, J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, H.A. Al-Lohedan, R.J. Ramalingam, A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv. 7(62), 38861–38870 (2017)

    Article  ADS  Google Scholar 

  19. M. Silambarasan, P.S. Ramesh, D. Geetha, Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures. J. Mater. Sci.: Mater. Electron. 28(1), 323–336 (2017)

    Google Scholar 

  20. V.S. Kumbhar, Y.R. Lee, C.S. Ra, D. Tuma, B.K. Min, J.J. Shim, Modified chemical synthesis of MnS nanoclusters on nickel foam for high performance all-solid-state asymmetric supercapacitors. RSC Adv. 7(27), 16348–16359 (2017)

    Article  ADS  Google Scholar 

  21. G. Bhattacharya, G. Kandasamy, N. Soin, R.K. Upadhyay, S. Deshmukh, Maity, & Roy, S. S., Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitors. RSC Adv. 7(1), 327–335 (2017)

    Article  ADS  Google Scholar 

  22. H. Yang et al., Graphene supercapacitor with both high power and energy density. Nanotechnology 28(44), 445401 (2017)

    Article  ADS  Google Scholar 

  23. S.G. Kandalkar et al., Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met. 160(11–12), 1299–1302 (2010)

    Article  Google Scholar 

  24. M.K. Lima-Tenório, C.S. Ferreira, Q.H.F. Rebelo, R.F.B.D. Souza, R.R. Passos, E.A.G. Pineda, L.A. Pocrifka, Pseudocapacitance properties of Co3O4 nanoparticles synthesized using a modified sol-gel method. Mater. Res. 21 (2018)

  25. J.L. Li, F. Gao, Y. Jing, R.Y. Miao, K.Z. Wu, X.D. Wang, Electrochemical characterization of MnO2 as the cathode material for a high voltage hybrid capacitor. Int. J. Miner. Metall. Mater. 16(5), 576–580 (2009)

    Article  Google Scholar 

  26. Y. Xie, F. Tian, Capacitive performance of molybdenum nitride/ titanium nitride nanotube array for supercapacitor. Mater. Sci. Eng. 215, 64–70 (2017)

    Article  Google Scholar 

  27. R. Lucio-Porto et al., VN thin films as electrode materials for electrochemical capacitors. Electrochim. Acta 141, 203–211 (2014)

    Article  Google Scholar 

  28. C.T. Anuradha, P. Raji, Facile synthesis and characterization of Co3O4 nanoparticles for high-performance supercapacitors using Camellia sinensis. Appl. Phys. A 126(3), 1–12 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Thiru. A. Tenzing, correspondent, Dr. S. Arivazhagan, principal, and Dr. A. Marikani, head, Department of Physics, Mepco Schlenk Engineering College, Sivakasi, for their support and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Mrs.C.T. Anuradha: Conceptualization, methodology, investigation, interpretation, writing. Dr.P. Raji: Reviewing and editing.

Corresponding author

Correspondence to P. Raji.

Ethics declarations

Conflict of Interest

The author declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuradha, C.T., Raji, P. Hydrothermal Synthesis, Characterization, and Electrochemical Behaviour of Cobalt Oxide (Co3O4) Nanoparticles for Stable Electrode with Enhanced Supercapacitance. Braz J Phys 52, 211 (2022). https://doi.org/10.1007/s13538-022-01214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01214-4

Keywords

Navigation