Skip to main content

Advertisement

Log in

Developing Spectroscopic and Imaging Techniques for Advanced Studies in Soil Physics Based on Results Obtained at Embrapa Instrumentation

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

A Correction to this article was published on 07 December 2022

This article has been updated

Abstract

The development of techniques based on computed tomography, X- or gamma-ray transmission or scattering, magnetic resonance imaging, particle-induced X-ray emission, and neutron activation analysis has enabled advanced research in the characterization of agricultural soil samples, both in laboratories and the crop environment. This paper discusses the pioneering work of Embrapa Instrumentation regarding the customization of these techniques to solve the problems encountered in the field of soil physics. This work has led to new insights into the management processes for food production. The studies include the modeling and evaluation of spatial and temporal variability of agricultural soil bulk density and water content measures, the distribution of macro- and micropores, the evaluation of expansive and collapsible soils, root development, fluid phase change, models based on multifractals, cellular automata and invasion percolation theory, and the elemental analysis of macro- and micronutrients, such as heavy metals. Such studies have improved agricultural management techniques and are useful to rationalize inputs and minimize the environmental impacts resulting from possible anthropization processes in the use of natural resources. In addition, the potential opportunities for the continued use of the spectroscopic and imaging techniques in soil science are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and Materials Availability

Upon request.

Change history

References

  1. G. Sposito, R.J. Reginato, Soil Science Society of America, Inc. (1992)

  2. K. Reichardt, L.C. Timm, Solo, planta e atmosfera- conceitos, processos e aplicações (Manole Editora, São Paulo, 2022)

  3. L. Martin-Neto, C.M.P. Vaz, S. Crestana, Instrumentação avançada em ciência do solo (Embrapa, São Carlos, 2007)

  4. SSSA, Glossary of soil science terms, (1997)

  5. M.J. Shipitalo, W.A. Dick, W.M. Edwards, Soil Tilll. Res. 53, 167–183 (2000)

    Article  Google Scholar 

  6. FAO, Main report. Rome (2022). https://doi.org/10.4060/cb9910en

  7. A.N. Beulter, J.F. Centurion, Pesqui. Agropec. Bras. 39, 581–588 (2004). https://doi.org/10.1590/S0100-204X2004000600010

    Article  Google Scholar 

  8. J. Perret, S.O. Prasher, A. Kantzas, C. Langford, Soil Sci. Soc. Am. J. 63, 1530–1543 (1999)

    Article  ADS  Google Scholar 

  9. A.N. Beutler, J.F. Centurion, M.A.P. da Cruz Centurion, A.P. da Silva, Rev. Bras. Cien. Solo. 30, 787–794 (2006). https://doi.org/10.1590/S0100-06832006000500004

    Article  Google Scholar 

  10. S. Crestana, C.M.P. Vaz, Soil Till. Res. 47, 19–26 (1998)

    Article  Google Scholar 

  11. E. Ferreira et al., Avaliação de diferentes tubos de acesso para medição da umidade do solo através do uso de sonda de Nêutrons (Embrapa, Rio de Janeiro, 1998)

    Google Scholar 

  12. R. Aoki, M. Suzuki, Powder Technol. 4, 102–104 (1971). https://doi.org/10.1016/0032-5910(71)80008-6

    Article  Google Scholar 

  13. D. Hillel, Environmental soil physics (Academic Press, London, 1998)

    Google Scholar 

  14. R.W. Miller, D.T. Gardner, Soils in our environment (Prentice Hall, Hoboken, 2001)

    Google Scholar 

  15. R. Cesareo, M. Giannini, L. Storelli, A miniature X-ray tomography scanner employing radioisotopic sources, in Proceedings of the International Conference on Applications of Physics to Medicine and Biology, Trieste. 1983, p. 631

  16. S. Crestana, Advisor Prof. Dr. Sérgio Mascarenhas - Instituto de Física de São Carlos - Universidade de São Paulo (IFSC-USP, São Carlos, 1985)

  17. S. Crestana, S. Mascarenhas, R.S. Pozzi-Mucelli, Soil Sci. 140, 326–332 (1985). https://doi.org/10.1097/00010694-198511000-00002

    Article  ADS  Google Scholar 

  18. P.E. Cruvinel, Advisor Prof. Dr. Sérgio Mascarenhas – Universidade Estadual de Campinas (UNICAMP, Campinas, 1987)

  19. P. Cruvinel, R. Cesareo, S. Crestana, IEEE Trans. Instrum. Meas. Inst. Electr. Electron. Eng. 39, 745–750 (1990)

    ADS  Google Scholar 

  20. National Institute of Intellectual Property (INPI), P.E. Cruvinel, S. Crestana, S. Mascarenhas, Patent, Model of Utility. Registration Number: 7700921–5 (Deposit: 12/06/1997, Funding Institution: Embrapa Instrumentation Agropecuária) (1997)

  21. L.F. Pires, J.A.R. Borges, O.O.S. Bacchi, K. Reichardt, Soil Till. Res. 110(2), 197–210 (2010). https://doi.org/10.1016/j.still.2010.07.013

    Article  Google Scholar 

  22. R.N. Onody, A.N.D. Posadas, S. Crestana, J. Appl. Phys. 78, 2970–2976 (1995). https://doi.org/10.1063/1.360044

    Article  ADS  Google Scholar 

  23. A.M. Cormack, J. Appl. Phys. 34, 2722–2727 (1963)

    Article  ADS  Google Scholar 

  24. G.N. Hounsfield, Br. J. Radiol. 46, 1016–1022 (1973). https://doi.org/10.1259/0007-1285-46-552-1016

    Article  Google Scholar 

  25. J. Radon, (Translated by P C Parks from the original German text) IEEE Trans. Med. Imag. MI–5(4), 170–176 (1986)

    Article  Google Scholar 

  26. D.F. Swinehart, J. Chem. Educ. 39(7), 333 (1962). https://doi.org/10.1021/ed039p333

    Article  Google Scholar 

  27. D.F. Jackson, D.J. Hawkes, Phys. Rep. 70(3), 169–233 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

    Article  ADS  Google Scholar 

  28. A.M. Petrovic, J.E. Siebert, P.E. Rieke, Soil Sci. Soc. Am. J. 46(3), 445–450 (1982). https://doi.org/10.2136/sssaj1982.03615995004600030001x

    Article  ADS  Google Scholar 

  29. L. Aylmore, J.M. Hainsworth, Aust. J. Soil Res. 21(4), 435–443 (1983)

    Article  Google Scholar 

  30. H. Panepucci, A. Tannús, Magnetic resonance imaging tutorial 1 (University of São Paulo (USP, Department of Physics and Informatics, Brazil, Instituto de Física de Sao Paulo, 1994), pp.1–25

    Google Scholar 

  31. Crestana et al., Experimental Heat Transfer, fluid mechanics and Thermodynamics, in Elsevier Science Publishers B.V., ed. by M. D. Kelleher et al, 1993, pp. 1660–1665

  32. T.R. Ferreira, L.F. Pires, K. Reichardt, Braz. J. Phys. 52, 33 (2022). https://doi.org/10.1007/s13538-021-01043-x

    Article  ADS  Google Scholar 

  33. C. Maschio, PhD Thesis – Universidade Estadual de Campinas (UNICAMP, Campinas, 2001)

  34. A.N.D. Posadas, PhD Thesis, Instituto de Física de São Carlos - Universidade de São Paulo (IFSC-USP, São Carlos, 1994)

  35. D.A.N. Posadas, A. Tannús, H.C. Panepucci, S. Crestana, Comput. Electron. Agric. 14(4), 255–267 (1996). https://doi.org/10.1016/0168-1699(95)00032-1

    Article  Google Scholar 

  36. S. Crestana, A.N.D. Posadas, J.Y. Parlange, in BAVEYE; Stewart, B. (Org.). Fractals in Soil Science, 2-d and 3-d fingering phenomenon in unsaturated soils investigated by fractal analysis, invasion percolation modeling and non-destructive image processing (CRC Press, Boca Raton, 1998), v, pp. 293–332

  37. A. Posadas, R. Quiroz, A. Tannús, S. Crestana, C.M. Vaz, Nonlin. Processes Geophys. 16, 159–168 (2009). https://doi.org/10.5194/npg-16-159-2009

    Article  ADS  Google Scholar 

  38. L.F. Pires, J.A.R. Borges, J.A. Rosa, M. Cooper, R.J. Heck, S. Passoni, W.L. Roque, Soil Till. Res. 165, 66–79 (2017). https://doi.org/10.1016/j.still.2016.07.010

    Article  Google Scholar 

  39. C.M.P. Vaz, MSc. Thesis - Escola Superior de Agricultura Luiz de Queiroz - Universidade de São Paulo (ESALQ-USP, São Carlos, 1989)

  40. C.M.P. Vaz, J.C.M. Oliveira, K. Reichardt, S. Crestana, P. Cruvinel, O. Bachhi, Soil Technol. Cremlinger. 5, 319–325 (1992)

    Google Scholar 

  41. A. Pedrotti, E.A. Pauletto, S. Crestana, P.E. Cruvinel, C.M.P. Vaz, J.M. Naime, A.M. Silva, Soils and plant nutrition, Sci. Agric. (Brazil, Piracicaba, 2003), 4, 60

  42. A. Pedrotti, E.A. Pauletto, S. Crestana, F.S.R. Holanda, P.E. Cruvinel, C.M.P. Vaz, Soil Till. Res. 80, 115–123 (2005). https://doi.org/10.1016/j.still.2004.03.003

    Article  Google Scholar 

  43. W. Conciani, PhD Thesis - Escola de Engenharia de São Carlos - Universidade de São Paulo (EESC-USP, São Carlos, 1997)

  44. O.O.S. Bacchi, K. Reichardt, L.F. Pires, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 229, 443–456 (2005)

    Article  ADS  Google Scholar 

  45. F.A.M. Cassaro, MSc. Thesis - Instituto de Física de São Carlos - Universidade de São Paulo (IFSC-USP, São Carlos, 1994)

  46. M. Biassusi, MSc. Thesis – Universidade Federal de Pelotas (UFPEL, Pelotas,1996)

  47. A.N.D. Posadas, MSc. Thesis - Instituto de Física de São Carlos - Universidade de São Paulo (IFSC-USP, São Carlos, 1990)

  48. J.M. Naime, MSc. Thesis – Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC-USP, São Carlos 1994)

  49. J.M. Naime, L.H.C. Mattoso, W.T.L. Silva, P.E. Cruvinel, L.M. Neto, S. Crestana, Conceitos e aplicações da Instrumentação para o avanço da agricutura (Embrapa, São Carlos, 2014)

    Google Scholar 

  50. J.M. Naime, PhD Thesis – Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC-USP, São Carlos 2001)

  51. L.A. Richards, J. Appl. Phys. 1, 318–333 (1931)

    ADS  Google Scholar 

  52. C. Rossi, J.R. Nimmo, Water Res. Research, washington 30, 701–708 (1994)

    Google Scholar 

  53. J.T. De Assis, PhD Thesis – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro (COPPE-UDRJ, Rio de Janeiro, 1992)

  54. R. Cesareo, D.V. Rao, C.R. Appoloni, A. Brunetti, Nucl. Instrum. Methods Phys. Res. A 356, 573–578 (1995). https://doi.org/10.1016/0168-9002(94)01245-8

    Article  ADS  Google Scholar 

  55. I. Lima, J.T. Assis, C.R. Apoloni, S.M.F. Mendonca de Souza, M.E.L. Duarte, R.T. Lopes, IEEE Trans. Nucl. Sci. 53, 1448–1453 (2009)

    Article  ADS  Google Scholar 

  56. A.M. Silva, PhD Thesis – Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC-USP, São Carlos 1997)

  57. A. Macedo, C.M.P. Vaz, J.M. Naime, P.E. Cruvinel, S. Crestana, Powder Technol. 101, 178–182 (1999). https://doi.org/10.1016/S0032-5910(98)00170-3

    Article  Google Scholar 

  58. A.H. Compton, Phys. Rev. 21, 483–502 (1923). https://doi.org/10.1103/PhysRev.21.483

    Article  ADS  Google Scholar 

  59. A.H. Compton, C.F. Hagenow, J. Opt. Soc. Am. 8, 487–491 (1924). https://doi.org/10.1364/JOSA.8.000487

    Article  ADS  Google Scholar 

  60. P.E. Cruvinel, F.A. Balogun, Minitomography scanner for agriculture based on dual-energy Compton scattering, in Proceedings of Brazilian Symposium on Computer Graphics and Image Processing-SIBGRAPI, vol. 13 (IEEE Computer Society, Los Alamitos, 2000), Gramado, pp. 193–199

  61. F.A. Balogun, P.E. Cruvinel, Nucl. Instrum. Methods Phys. Res. A. 505(12), 502–507 (2003). https://doi.org/10.1016/S0168-9002(03)01133-1

    Article  ADS  Google Scholar 

  62. P.E. Cruvinel, F.A. Scannavino Junior, Evolução de um instrumento para avaliação da compactação de solos agrícolas com espalhamento Compton, In: R. P. Silva and C. E. A. Furlani. CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA - CONBEA, 40, 2011, Cuiabá-MT. Anais... Cuiabá, 2011, ISBN: 978–85–64681–00–2. 1

  63. F.A. Scannavino Jr., PhD Thesis, Instituto de Física de São Carlos - Universidade de São Paulo (IFSC-USP, São Carlos, 2013)

  64. F.A. Scannavino Jr., P.E. Cruvinel, Nucl. Instrum. Methods Phys. Res. A. 674, 28–38 (2012). https://doi.org/10.1016/j.nima.2011.12.120

    Article  ADS  Google Scholar 

  65. C.M.P. Vaz, I.C. de Maria, P.O. Lasso, M. Tuller, Soil Sci. Soc. Am. J. 75(3), 832–841 (2011). https://doi.org/10.2136/sssaj2010.0245

    Article  ADS  Google Scholar 

  66. C.M.P. Vaz et al., New perspectives for the application of high-resolution benchtop X-ray Micro CT for quantifying void, solid and liquid phases in soils, in Application of Soil Physics in Environmental Analyses, ed. W. G. Teixeira (Springer International Publishing, Switzerland, 2014)

  67. F. Yang et al., J. Microsc. 261, 88–104 (2015). https://doi.org/10.1111/jmi.12319

    Article  Google Scholar 

  68. J.M.G. Beraldo, F.A. Scannavino Jr, P.E. Cruvinel, Eng. Agríc. 34(6) (2014)

  69. S. Passoni, L.F. Pires, R. Heck, J.A. Rosa, Rev. Bras. Cien. Solo. 39(2), 448–457 (2015). https://doi.org/10.1590/01000683rbcs20140360

    Article  Google Scholar 

  70. D.C. Marchini et al., Rev. Bras. Eng. Agric. AMB. 19, 574–580 (2015)

    Article  Google Scholar 

  71. C.L. Tseng, Graduate Program and Concentration area in Hydraulics and Sanitation at EESC-USP- São Carlos, SP.182 pages. PhD Thesis, 2017

  72. C.L. Tseng et al., Geoderma 318, 58–79 (2018)

    Article  ADS  Google Scholar 

  73. C.L. Tseng, M.C. Alves, D.M.B.P. Milori, S. Crestana, Soil Till. Res. 181, 37–45 (2018). https://doi.org/10.1016/j.still.2018.03.018

    Article  Google Scholar 

  74. H. Zubeldia et al., Int. J. Geomech. 16(2), 04015057-1–04015057-8 (2015)

    Google Scholar 

  75. L.P.D.F. Borges, R.M. Moraes, S. Crestana, A.L.B. Cavalcante, Int. J. Geomech. 19, 04019088-1–04019088-14 (2019)

    Google Scholar 

  76. P.V.S. Mascarenhas, A.L.B. Cavalcante, Int. J. Geomech. (2022). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002251

    Article  Google Scholar 

  77. R. Cesareo, Revista Del Nuovo Cimento 23(7), 220–230 (2000)

    Google Scholar 

  78. H. Erdogan, J.A. Fessler, Phys. Med. Biol. 44, 2835–2851 (1999). https://doi.org/10.1088/0031-9155/44/11/311

    Article  Google Scholar 

  79. A.C. Kak, M. Slaney, Principles of computerized tomographic imaging (IEEE Press, Manhattan, 1989)

    MATH  Google Scholar 

  80. J. Wang, Z. Chi, Y. Wang, J. Appl. Phys. 86, 1693–1698 (1999). https://doi.org/10.1063/1.370949

    Article  ADS  Google Scholar 

  81. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (John Wiley & Sons, Inc., 2009)

  82. E.C. Titchmarsh, Introduction to fourier integrals (Claredon Press, Oxford, 1962)

    Google Scholar 

  83. P.E. Cruvinel, M.F.L. Pereira, J.H. Saito, L.D.F. Costa, I.E.E. Trans, Instrum. Meas. Inst. Electr. Electron. Eng. 58(9), 3295–3304 (2009)

    Google Scholar 

  84. M.A.M. Laia, A.L.M. Levada, L.C. Botega, M.F.L. Pereira, P.E. Cruvinel, Á. Macedo, A novel model for combining projection and image filtering using Kalman and discrete wavelet transform in computerized tomography, in 11th International Conference on Computational Science and Engineering. IEEE, 2008

  85. M.F.L. Pereira, P.E. Cruvinel, Comput. Electron. Agric. 111, 151–163 (2015). https://doi.org/10.1016/j.compag.2014.12.006

    Article  Google Scholar 

  86. C. De Boor, J. Approx. Theor. 6, 50–62 (1972). https://doi.org/10.1016/0021-9045(72)90080-9

    Article  Google Scholar 

  87. T.B. Johansson, R. Akselsson, S.A.E. Johansson, Nucl. Instrum. Methods. 84, 141–143 (1970). https://doi.org/10.1016/0029-554X(70)90751-2

    Article  ADS  Google Scholar 

  88. P.E. Cruvinel, R.G. Flocchini, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms. 75, 415–419 (1993). https://doi.org/10.1016/0168-583X(93)95687-Z

    Article  ADS  Google Scholar 

  89. P.E. Cruvinel, R.G. Flocchini, S. Crestana, J.R. Morales, J. Miranda, B.H. Kusko, D.R. Nielsen, Soil Sci. 155(2), 100–104 (1993). https://doi.org/10.1097/00010694-199302000-00003

    Article  ADS  Google Scholar 

  90. P.E. Cruvinel, R.G. Flocchini, P.E. Artaxo, S. Crestana, P.S.P. Herrmann, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms. 150, 478–483 (1999). https://doi.org/10.1016/S0168-583X(98)01017-9

    Article  ADS  Google Scholar 

  91. P.E. Cruvinel, S. Crestana, P.E. Artaxo, J.V. Martins, M.J.A. Armelin, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms. 109–110, 247–251 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Roberto Cesareo for his encouragement and the relevant contributions to Embrapa Instrumentation and Brazil, related to the application of radiation physics in agriculture.

Funding

The study is funded by the Brazilian Agricultural Research Corporation (Embrapa), the National Council for Scientific and Technological Development (CNPq), the Financier of Studies and Projects (FINEP), and the São Paulo State Research Support Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

S. Crestana and P.E. Cruvinel: conceptualization, data organization, figure organization, prospective vision and writing—original draft.

Corresponding author

Correspondence to Silvio Crestana.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crestana, S., Cruvinel, P.E. Developing Spectroscopic and Imaging Techniques for Advanced Studies in Soil Physics Based on Results Obtained at Embrapa Instrumentation. Braz J Phys 52, 200 (2022). https://doi.org/10.1007/s13538-022-01202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01202-8

Keywords

Navigation