Skip to main content
Log in

Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Zinc oxide thin films annealed at different temperatures (400, 450, 500, 550 °C) were prepared using the spray pyrolysis technique (SPT). X-ray scattering measurements have shown that the films were polycrystalline, having a hexagonal wurtzite structure with a dominated alignment in the (002) plane direction. The films undergo increases in crystallite size due to annealing temperatures. All the films showed more than 90% transparency across the whole visible spectrum. A blue shift of the visible energy gap was observed through increased annealing temperatures. Measurement of the gas response of the zinc oxide thin films to ethanol gas at an operating temperature of 150 °C and a gas concentration of 1000 ppm showed a high percentage response of 97.15%. Also, the response time and recovery time were measured for different annealing temperatures. The novelty in this research is the manufacture of a local system by the research team that can be used as a gas sensing system for thin films such as zinc oxide, which in turn succeeded in sensing ethanol gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy. Appl. Phys. Lett. 79(25), 4139–4141 (2001). https://doi.org/10.1063/1.1424066

    Article  ADS  Google Scholar 

  2. J. Chen, T. Fujita, Effects of annealing on photoluminescence of ZnO thin film prepared by vapor phase growth. Jpn. J. Appl. Phys. 42(2R), 602 (2003). https://doi.org/10.1143/JJAP.42.602

    Article  ADS  Google Scholar 

  3. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76(3), 259–261 (2000). https://doi.org/10.1063/1.125740

    Article  ADS  Google Scholar 

  4. J. Wang, W. Chen, M. Wang, Properties analysis of Mn-doped ZnO piezoelectric films. J. Alloy. Compd. 449(1–2), 44–47 (2008). https://doi.org/10.1016/j.jallcom.2006.01.125

    Article  Google Scholar 

  5. O.M. Abdulmunem, M.J. Mohammed Ali, E.S. Hassan, Optical and structural characterization of aluminium doped zinc oxide thin films prepared by thermal evaporation system. Optical Materials 109, 110374 (2020). https://doi.org/10.1016/j.optmat.2020.110374

  6. T. Sergiu Shishiyanu, S. Shishiyanu Teodor, I. Lupan Oleg, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sensors and Actuators B: Chemical 107(1), 379–386 (2005). https://doi.org/10.1016/j.snb.2004.10.030

  7. E. Suvaci, İ. Özgür Özer, Processing of textured zinc oxide varistors via templated grain growth. J. Eur. Ceram. Soc. 25(9), 1663–1673 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.05.026

  8. S. Chakrabarti, and K. Dutta Binay. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Materials. 112(3), 269–278 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.013

  9. T. Meron, G. Markovich, Ferromagnetism in colloidal Mn2 -doped ZnO nanocrystals. J. Phys. Chem. B 109(43), 20232–20236 (2005). https://doi.org/10.1021/jp0539775

    Article  Google Scholar 

  10. H. Michael Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001). https://doi.org/10.1126/science.1060367

  11. J. Koike, K. Shimoe, H. Ieki, 1.5 GHz low-loss surface acoustic wave filter using ZnO/sapphire substrate. Japan. J. Appl. Phys. 32(5S), 2337 (1993). https://doi.org/10.1143/JJAP.32.2337

  12. J.B. Webb, D.F. Williams, M. Buchanan, Transparent and highly conductive films of ZnO prepared by rf reactive magnetron sputtering. Appl. Phys. Lett. 39(8), 640–642 (1981). https://doi.org/10.1063/1.92815

    Article  ADS  Google Scholar 

  13. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 23(5A), L280 (1984). https://doi.org/10.1143/JJAP.23.L280

    Article  ADS  Google Scholar 

  14. M. Krunks, E. Mellikov, Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films 270(1–2), 33–36 (1995). https://doi.org/10.1016/0040-6090(95)06893-7

    Article  ADS  Google Scholar 

  15. K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets. Vacuum 66(3–4), 505–509 (2002). https://doi.org/10.1016/S0042-207X(02)00123-9

    Article  ADS  Google Scholar 

  16. C. David Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81(10), 1830–1832. https://doi.org/10.1063/1.1504875

  17. N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J. Bernard Leriche, C. Guéry, Structural and physical characterisation of transparent conducting pulsed laser deposited In2O3–ZnO thin films. J. Mater. Chem. 10(10), 2315–2319 (2000). https://doi.org/10.1039/B002094J

  18. Y. Natsume, H. Sakata, Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol–gel process. Mater. Chem. Phys. 78(1), 170–176 (2003). https://doi.org/10.1016/S0254-0584(02)00314-0

    Article  Google Scholar 

  19. H. Jin Lim, D. Yong Lee, and Y. Jei Oh. Gas sensing properties of ZnO thin films prepared by microcontact printing. Sensors and Actuators A: Physical 125, no. 2 (2006): 405–410. https://doi.org/10.1016/j.sna.2005.08.031

  20. S. Po Chang, and K. Yu Chen. UV illumination room-temperature ZnO nanoparticle ethanol gas sensors. ISRN Nanotechnology 2012 (2012). https://doi.org/10.5402/2012/453517

  21. D. Zhang, G. Dong, Y. Cao, Y. Zhang, Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. J Colloid Interface Sci. 15(528), 184–191 (2018). https://doi.org/10.1016/j.jcis.2018.05.085

    Article  ADS  Google Scholar 

  22. J. Wu, D. Zhang, Y. Cao, Fabrication of iron-doped titanium dioxide quantum dots/molybdenum disulfide nanoflower for ethanol gas sensing. J. Colloid Interface Sci. 529, 556–567, ISSN 0021–9797 (2018). https://doi.org/10.1016/j.jcis.2018.06.049

  23. M. Jiao, C.Nguyen Viet, N. Van Duy, H. Nguyen Duc, N. Van Hieu, K. Hjort, and H. Nguyen, Influence of annealing temperature on theperformance and stability of on-chip hydrothermally grown ZnO nanorod gassensor toward NO2. Acad. J. Sci. Res. 6(5), 180–189. https://doi.org/10.15413/ajsr.2018.0104

  24. A. Katoch, G. Joo Sun, S. Woo Choi, J. Hyuk Byun, S. Sub Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B: Chem. 185, 411–416 (2013). https://doi.org/10.1016/j.snb.2013.05.030

  25. A. Katoch, Z. Ul Abideen, J. Hun Kim, S. Sub Kim, Crystallinity dependent gas-sensing abilities of ZnO hollow fibers. Met Mater Int 22(5), 942–946 (2016). https://doi.org/10.1007/s12540-016-6099-1

  26. A. Bagheri Khatibani, Investigation of gas sensing property of zinc oxide thin films deposited by Sol-Gel method: effects of molarity and annealing temperature. Ind. J. Phys. 1–10 (2020). https://doi.org/10.1007/s12648-020-01689-4

  27. S. Matsushima. T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, Role of additives on alcohol sensing by semiconductor gas sensor. Chem. Lett. 18(5), 845–848 (1989). https://doi.org/10.1246/cl.1989.845

  28. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloy. Compd. 648, 46–52 (2015). https://doi.org/10.1016/j.jallcom.2015.04.236

    Article  Google Scholar 

  29. T. Bora, K. Lakshman Karthik, S. Sarkar, A. Makhal, S. Sardar, K. Pal Samir, and J. Dutta, Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin. Beilstein Journal of Nanotechnology 4(1), 714–725 (2013). https://doi.org/10.3762/bjnano.4.81

  30. R. Kumar, G. Kumar, M.S. Akhtar, A. Umar, Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. J. Alloy. Compd. 629, 167–172 (2015). https://doi.org/10.1016/j.jallcom.2014.12.232

    Article  Google Scholar 

  31. A. Modwi, A. Ghanem Mohamed, M. Al-Mayouf Abdullah, A. Houas, Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mole. Struct. 1173, 1–6 (2018). https://doi.org/10.1016/j.molstruc.2018.06.082

  32. F. Abele’s, Optical properties of solids, North-Holland Publication co, New York (1972)

  33. R. Swanepoel, Determination of thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  34. V.P. Deshpande, S.D. Sartale, A.N. Vyas, A.U. Ubale, Temperature dependent properties of spray deposited nanostructured ZnO thin films. Int J Mater Chem 7(2), 36–46 (2017). https://doi.org/10.5923/j.ijmc.20170702.03

    Article  Google Scholar 

  35. D. Raoufi, T. Raoufi, The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Appl. Surf. Sci. 255(11), 5812–5817 (2009). https://doi.org/10.1016/j.apsusc.2009.01.010

    Article  ADS  Google Scholar 

  36. P.J. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918). https://doi.org/10.1590/sajs.2013/a0019

    Article  Google Scholar 

  37. E.S. Hassan, A.K. Elttayef, S.H. Mostafa, M.H. Salim, S.S. Chiad, Silver oxides nanoparticle in gas sensors applications. J. Mater. Sci. Mater. Electron. 30, 15943–15951 (2019). https://doi.org/10.1007/s10854-019-01954-1

    Article  Google Scholar 

  38. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices. Sensors and actuators 18(1), 71–113 (1989). https://doi.org/10.1016/0250-6874(89)87026-X

    Article  Google Scholar 

  39. R.J.B. Balaguru, B.G. Jeyaprakash, Mimic of a gas sensor, metal oxide gas sensing mechanism, factors influencing the sensor performance and role of nanomaterials based gas sensors. NPTEL–Electrical & Electronics Engineering–Semiconductor Nanodevices (2004)

Download references

Acknowledgements

The authors would like to express their gratitude and acknowledge to the Department of Physics staff at College of Science of the Mustansiriyah University, the Laboratory of Advanced Materials, for making the necessary measurements.

Author information

Authors and Affiliations

Authors

Contributions

ES conceived the topic. OM and ES implemented and tested the samples. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Oday M. Abdulmunem.

Ethics declarations

Ethical Statement

Hereby, I Ehssan S. Hassan consciously assure that for the manuscript “Measuring the response of annealed zinc oxide thin films to ethanol gas” the following is fulfilled:

  1. 1.

    The paper is not currently being considered for publication elsewhere.

  2. 2.

    The paper reflects the authors' own research and analysis in a truthful and complete manner.

  3. 3.

    The paper properly credits the meaningful contributions of co-authors and co-researchers.

  4. 4.

    The results are appropriately placed in the context of prior and existing research.

  5. 5.

    All sources used are properly disclosed (correct citation). Literally copying of text must be indicated as such by using quotation marks and giving proper reference.

  6. 6.

    All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

  7. 7.

    I agree with the above statements and declare that this submission follows the policies of Brazilian Journal of Physics Ionics as outlined in the Guide for Authors and in the Ethical Statement.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, E.S., Abdulmunem, O.M. Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas. Braz J Phys 52, 160 (2022). https://doi.org/10.1007/s13538-022-01158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01158-9

Keywords

Navigation