Skip to main content
Log in

Robust Interface States on Topological Photonic Crystals Composed of Hexagonal Rods

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Over the last years, topology has been a hot field in Condensed Matter, and resources about electrical and photonic systems have shown us special behaviors that can be used in technological implementation. In particular, the interest in Topological Photonic Crystals has been increased because of their robust edge states that can emerge in a non-trivial bandgap and have special features. Those edge states are well localized around the interface between two different kinds of topologies, so they are called Interface States. Furthermore, the non-trivial topological behavior guarantees their protection against reflection, defects, and disorders. All those features make the Topological Photonic Crystal a good candidate to create channels of non-losses light transportation. Here, we propose a two-dimensional Topological Photonic Crystal composed of dielectric hexagonal rods and we study the robustness, against small defects and disorders, and localization of those modes. We induce the topological behavior by introducing a geometric perturbation, and we observe the emergence of two pseudospin Interface States that are topologically protected and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Ando, Topological insulator materials. J. Phys. Soc. Jpn. 82(10), 102001 (2013)

  2. B.A. Bernevig, S.-C. Zhang, Quantum spin hall effect. Phys. Rev. Lett. 96, 106802 (2006)

  3. G. Harari, M.A. Bandres, Y. Lumer, M.C. Rechtsman, Y.D. Chong, M. Khajavikhan, D.N. Christodoulides, M. Segev, Topological insulator laser: theory. Science 359(6381) (2018)

  4. D. Yoshioka, The quantum Hall effect, vol. 133 (Springer Science & Business Media, 2013)

  5. H. Wang, S.K. Gupta, B. Xie, M. Lu, Topological photonic crystals: a review. Frontiers of Optoelectronics 13(1), 50–72 (2020)

    Article  Google Scholar 

  6. X. Xi, K.-P. Ye, R.-X. Wu, Topological photonic crystal of large valley Chern numbers. Photonics Research 8(9), B1–B7 (2020)

    Article  Google Scholar 

  7. M.E. Cage, K. Klitzing, A. Chang, F. Duncan, M. Haldane, R. Laughlin, A. Pruisken,  D. Thouless, The quantum Hall effect (Springer Science & Business Media, 2012)

  8. J. Maciejko, T.L. Hughes, S.-C. Zhang, The quantum spin hall effect. Annu. Rev. Condens. Matter Phys. 2(1), 31–53 (2011)

    Article  ADS  Google Scholar 

  9. S.-Q. Shen, Topological insulators, vol. 174 (Springer, 2012)

  10. B.L. Altshuler, I.L. Aleiner, V.I. Yudson, Localization at the edge of a 2D topological insulator by Kondo impurities with random anisotropies. Phys. Rev. Lett. 111, 086401 (2013)

  11. Z. Qiao, W.-K. Tse, H. Jiang, Y. Yao, Q. Niu, Two-dimensional topological insulator state and topological phase transition in bilayer graphene. Phys. Rev. Lett, 107, 256801 (2011)

  12. J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, X. Zhang, Valley photonic crystals for control of spin and topology. Nat. Mater. 16(3), 298–302 (2017)

    Article  ADS  Google Scholar 

  13. F. Liu, H.-Y. Deng, K. Wakabayashi, Topological photonic crystals with zero berry curvature. Phys. Rev. B 97, 035442 (2018)

  14. S. Raghu, F.D.M. Haldane, Analogs of quantum-hall-effect edge states in photonic crystals. Phys. Rev. A 78(3), 033834 (2008)

  15. C. Wang, H. Zhang, H. Yuan, J. Zhong, C. Lu, Universal numerical calculation method for the berry curvature and Chern numbers of typical topological photonic crystals. Frontiers of Optoelectronics 1–16 (2020)

  16. Y. Wang, W. Zhang, X. Zhang, Tunable topological valley transport in two-dimensional photonic crystals. New J. Phys. 21(9), 093020 (2019)

  17. S. Wong, M. Saba, O. Hess,  S.S. Oh, Gapless unidirectional photonic transport using all-dielectric Kagome lattices. Physical Review Research 2(1), 012011 (2020)

  18. S. Wu, B. Jiang, Y. Liu, J.-H. Jiang, All-dielectric photonic crystal with unconventional higher-order topology. Photonics Research 9(5), 668–677 (2021)

    Article  Google Scholar 

  19. B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang, M.-H. Lu, Y.-F. Chen, Second-order photonic topological insulator with corner states. Phys. Rev. B 98(20), 205147 (2018)

  20. B.-Y. Xie, H.-F. Wang, X.-Y. Zhu, M.-H. Lu, Z. Wang, Y.-F. Chen, Photonics meets topology. Opt. Express 26(19), 24531–24550 (2018)

    Article  ADS  Google Scholar 

  21. Z. Yang, E. Lustig, Y. Lumer, M. Segev, Photonic floquet topological insulators in a fractal lattice. Light: Science & Applications 9(1), 1–7 (2020)

    Article  ADS  Google Scholar 

  22. D. Jahani, A. Alidoust Ghatar, L. Abaspour, T. Jahani, Photonic hall effect. J. Appl. Phys. 124(4), 043104 (2018)

  23. S. Mittal, V.V. Orre, D. Leykam, Y.D. Chong, M. Hafezi, Photonic anomalous quantum hall effect. Phys. Rev. Lett. 123, 043201 (2019)

  24. X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen, J.-W. Dong, Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019)

  25. B. Xie, G. Su, H.-F. Wang, F. Liu, L. Hu, S.-Y. Yu, P. Zhan, M.-H. Lu, Z. Wang, Y.-F. Chen, Higher-order quantum spin hall effect in a photonic crystal. Nat. Commun. 11(1), 1–8 (2020)

    Article  ADS  Google Scholar 

  26. L. Zhang, Y. Yang, Z.-K. Lin, P. Qin, Q. Chen, F. Gao, E. Li, J.-H. Jiang, B. Zhang, H. Chen, Higher-order topological states in surface-wave photonic crystals. Adv. Sci. 7(6), 1902724 (2020)

  27. O. Bleu, D.D. Solnyshkov, G. Malpuech, Quantum valley hall effect and perfect valley filter based on photonic analogs of transitional metal dichalcogenides. Phys. Rev. B 95, 235431 (2017)

  28. M.L.N. Chen, L.J. Jiang, Z. Lan, W.E.I. Sha, Coexistence of pseudospin- and valley-hall-like edge states in a photonic crystal with \({C}_{3v}\) symmetry. Phys. Rev. Research 2, 043148 (2020)

  29. M. Kim, Y. Kim, J. Rho, Spin-valley locked topological edge states in a staggered chiral photonic crystal. New J. Phys. 22(11), 113022 (2020)

  30. Y. Wu, X. Hu, Q. Gong, Reconfigurable topological states in valley photonic crystals. Phys. Rev. Materials 2, 122201 (2018)

  31. H. Dai, T. Liu, J. Jiao, B. Xia, D. Yu, Double Dirac cone in two-dimensional phononic crystals beyond circular cells. J. Appl. Phys. 121(13), 135105 (2017)

  32. L.-H. Wu, X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114(22), 223901 (2015)

  33. J. Hajivandi, H. Kurt, Topological photonic states and directional emission of the light exiting from the photonic topological structure composed of two dimensional honeycomb photonic crystals with different point group symmetries (2020). arXiv preprint arXiv:2002.11979

  34. J. Hajivandi, H. Pakarzadeh, H. Kurt, Intensity tuning of the edge states in the imperfect topological waveguides based on the photonic crystals with the c3 point group symmetry. Opt. Quant. Electron. 53(2), 1–14 (2021)

  35. A.B. Khanikaev, G. Shvets, Two-dimensional topological photonics. Nat. Photonics 11(12), 763–773 (2017)

    Article  ADS  Google Scholar 

  36. E. Sauer, J.P. Vasco, S. Hughes, Theory of intrinsic propagation losses in topological edge states of planar photonic crystals. Physical Review Research 2(4), 043109 (2020)

  37. G. Arregui, J. Gomis-Bresco, C.M. Sotomayor-Torres, P.D. Garcia, Quantifying the robustness of topological slow light. Phys. Rev. Lett. 126(2), 027403 (2021)

  38. M.I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, N.M. Litchinitser, Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14(1), 31–34 (2019)

    Article  ADS  Google Scholar 

  39. Y. Peng, B. Yan, J. Xie, E. Liu, H. Li, R. Ge, F. Gao, J. Liu, Frequency tunable topological edge states of two-dimensional honeycomb lattice photonic crystals (2019). arXiv preprint arXiv:1912.08078

  40. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory: application to the physics of condensed matter (Springer Science & Business Media, 2007)

  41. Y. Yang, Y. F. Xu, T. Xu, H.-X. Wang, J.-H. Jiang, X. Hu, Z. H. Hang, Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120(21), 217401 (2018)

  42. H. Huang, S. Huo, J. Chen, Reconfigurable topological phases in two-dimensional dielectric photonic crystals. Curr. Comput.-Aided Drug Des. 9(4), 221 (2019)

    Google Scholar 

  43. C. Inc. Comsol (2021)

  44. W.-M. Deng, X.-D. Chen, F.-L. Zhao, J.-W. Dong, Transverse angular momentum in topological photonic crystals. J. Opt. 20(1), 014006 (2017)

  45. Y. Fang, Z. Wang, Highly confined topological edge states from two simple triangular lattices with reversed materials. Opt. Commun. 479, 126451 (2021)

  46. D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar, Nonlinear topological photonics. Appl. Phys. Rev. 7(2), 021306 (2020)

  47. Z. Li, H.-C. Chan, Y. Xiang, Fragile topology based helical edge states in two-dimensional moon-shaped photonic crystals. Phys. Rev. B 102(24), 245149 (2020)

  48. R. Meade, J.N. Winn, J. Joannopoulos, Photonic crystals: Molding the flow of light (Pinceton Univ, Press, 1995)

    MATH  Google Scholar 

  49. N. Parappurath, F. Alpeggiani, L. Kuipers, E. Verhagen. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6(10), eaaw4137 (2020)

  50. M.G. Silveirinha, Bulk-edge correspondence for topological photonic continua. Phys. Rev. B 94(20), 205105 (2016)

  51. L. Lu, J.D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photonics 8(11), 821–829 (2014)

    Article  ADS  Google Scholar 

  52. J. Ma, X. Li, Y. Fang, Embedded topological edge states from reversed two-dimensional photonic crystals. Physica E: Low-dimensional Systems and Nanostructures 127, 114517 (2021)

  53. Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, R. Singh, Terahertz topological photonics for on-chip communication. Nat. Photonics 14(7), 446–451 (2020)

    Article  ADS  Google Scholar 

  54. X. Ni, D. Purtseladze, D.A. Smirnova, A. Slobozhanyuk, A. Alù, A.B. Khanikaev. Spin-and valley-polarized one-way Klein tunneling in photonic topological insulators. Sci. Adv. 4(5), eaap8802 (2018)

  55. S. Arora, T. Bauer, R. Barczyk, E. Verhagen, L. Kuipers, Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light: Science & Applications 10(1), 1–7 (2021)

    Article  ADS  Google Scholar 

  56. X.-D. Chen, F.-L. Shi, H. Liu, J.-C. Lu, W.-M. Deng, J.-Y. Dai, Q. Cheng, J.-W. Dong, Tunable electromagnetic flow control in valley photonic crystal waveguides. Phys. Rev. Applied 10, 044002 (2018)

  57. H. Huang, S. Huo, J. Chen, Subwavelength elastic topological negative refraction in ternary locally resonant phononic crystals. Int. J. Mech. Sci. 198, 106391 (2021)

  58. X.-D. Chen, F.-L. Zhao, M. Chen, J.-W. Dong, Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 96(2), 020202 (2017)

  59. X.-T. He, E.-T. Liang, J.-J. Yuan, H.-Y. Qiu, X.-D. Chen, F.-L. Zhao, J.-W. Dong, A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10(1), 1–9 (2019)

    Article  ADS  Google Scholar 

  60. Y. Han, H. Fei, H. Lin, Y. Zhang, M. Zhang, Y. Yang, Design of broadband all-dielectric valley photonic crystals at telecommunication wavelength. Opt. Commun. 488, 126847 (2021)

  61. Y. Gong, S. Wong, A.J. Bennett, D.L. Huffaker, S.S. Oh, Topological insulator laser using valley-hall photonic crystals. ACS Photonics 7(8), 2089–2097 (2020)

    Article  Google Scholar 

  62. S. Mittal, W. DeGottardi, M. Hafezi, Topological photonic systems. Opt. Photonics News 29(5), 36–43 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Borges Silva.

Ethics declarations

Ethical Conduct

The author has conducted the entire research in an honest way and has not changed, omitted, or added to the results. There are no research misconducts, such as plagiarism, duplication of publication, falsification, or distortion of research results.

Conflicts of Interest

No potential conflict of interest was reported by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.B. Robust Interface States on Topological Photonic Crystals Composed of Hexagonal Rods. Braz J Phys 52, 108 (2022). https://doi.org/10.1007/s13538-022-01106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01106-7

Keywords

Navigation