Skip to main content
Log in

Propagation and Soliton Collision of Positron Acoustic Waves in Four-component Space Plasmas

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the collision dynamics of positron acoustic waves (PAWs) in an unmagnetized plasma containing immobile ions, inertial cold positron, non-thermally distributed hot electrons and positrons is investigated theoretically. The study of soliton collisions represent one of the marvellous phenomena in nonlinear wave dynamics. The dynamics of the system is governed by the well established nonlinear Schrödinger equation (NLSE). By employing Hirota bilinearization technique the collision between two solitary wave solutions is obtained. It is found that the effect of the ratio of the hot electron temperature to the hot positron temperature (\(\sigma\)) and non-thermal parameter (\(\beta\)) plays a significant role in changing the amplitude of the PAWs. From this result it is perceived that the fascinating inelastic collisions of soliton supports energy redistribution among the modes including amplitude change of the soliton. It is observed that the profile of the solitons is strongly influenced by the relevant physical parameters. Finally the result of the investigation may be useful to analyze the collective phenomena related to PAWs collisions that are of considerable interest in space and laboratory plasmas as well as in plasma applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.Z. Sagdeev, in Reviews of Plasma Physics, ed. by M.A. Leontovich (Consultants Bureau, New York, 1966), p. 23

  2. H. Ikezi, R. Taylor, D. Baker, Formation and interaction of ion-acoustic solitons. Phys. Rev. Lett. 25, 11 (1970)

    Article  ADS  Google Scholar 

  3. F.D. Trappert, Improved Korteweg de-Vries Equation for ion acoustic waves. Phys. Fluids 15, 2446 (1972)

    Article  ADS  Google Scholar 

  4. S. Tagare, Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15, 1247 (1973)

    Article  ADS  Google Scholar 

  5. H. Schamel, Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905 (1972)

    Article  ADS  Google Scholar 

  6. H. Schamel, A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377 (1973)

    Article  ADS  Google Scholar 

  7. S. Watanabe, Interpretation of experiments on ion acoustic soliton. J. Phys. Soc. Jpn. 44, 611 (1978)

    Article  ADS  Google Scholar 

  8. P. Chatterjee, T. Saha, S.V. Muniandy, C.S. Wong, R. Roychoudhury, Ion acoustic solitary waves and double layers in dense electron-positron-ion magnetoplasma. Phys. Plasmas 17, 012106 (2010)

  9. K. Roy, A.P. Misra, P. Chatterjee, Ion-acoustic shocks in quantum electron-positron-ion plasmas. Phys. Plasmas 15, 032310 (2008)

  10. R. Roychoudhury, S. Bhattacharya, Ion-acoustic shocks in quantum electron-positron-ion plasmas. J. Plasma Phys. 42, 353 (2009)

    Article  ADS  Google Scholar 

  11. B. Sahu, R. Roychoudhury, Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions. Phys. Plasmas. 12, 052106 (2005)

  12. B. Sahu, Nonplanar ion acoustic waves with kappa-distributed electrons. Phys. Plasmas 18, 062308 (2011)

  13. F.C. Michel, Theory of neutron star magnetosphere. (Chicago University Press, Chicago, 1991)

  14. A.P. Lightman, Relativistic thermal plasmas: Pair processes and equilibria. Astrophys. J. 253, 842 (1982)

    Article  ADS  Google Scholar 

  15. A.A. Zdziarski, Saturated pair-photon cascades on isotropic background photons. Astrophys. J. 335, 786 (1988)

    Article  ADS  Google Scholar 

  16. H.R. Miller, P.J. Witta, Active galactic nuclei (Springer-Verlag, Berlin, 1987)

  17. C.S. Reynolds, A.C. Fabian, A. Celotti, M.J. Rees, The matter content of the jet in M87: evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 283, 873 (1996)

    Article  ADS  Google Scholar 

  18. K. Hirotani, S. Iguchi, M. Kimura, K. Wajima, Pair plasma dominance in the 3C 279 Jet on parsec scales. Publ. Astron. Soc. Jpn. 51, 263 (1999)

    Article  ADS  Google Scholar 

  19. F.C. Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  20. P.K. Shukla, N.N. Rao, M.Y. Yu, N.L. Tsintsadze, Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1 (1986)

    Article  ADS  Google Scholar 

  21. V. Berezhiani, D.D. Tskhakaya, P.K. Shukla, Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46, 6608 (1992)

    Article  ADS  Google Scholar 

  22. P. Helander, D.J. Ward, Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90, 135004 (2003)

  23. S.I. Popel, S.V. Vladimirov, P.K. Shukla, Ion acoustic solitons in electron-positron-ion plasmas. Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  24. Y.N. Nejoh, Effects of positron density and temperature on large amplitude ion-acoustic waves in an electron-positron-ion plasma. Aust. J. Phys. 50, 309–317 (1997)

    Article  ADS  Google Scholar 

  25. W.M. Moslem, I. Kourakis, P. K.Shukla, R. Schlickeiser, Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei. Physics of Plasmas 14 (10), 102901 (2007)

  26. T. K. Baluku, M.A. Hellberg, Ion acoustic solitary waves in an electron-positron-ion plasma with non-thermal electrons. Plasma Physics and Controlled Fusion 53, 095007 (2011)

  27. Y.N. Nejoh, The effect of the ion temperature on large amplitude ion acoustic waves in an electron-positron-ion plasma. Phys. Plasmas 3, 1447 (1996)

    Article  ADS  Google Scholar 

  28. M. Tribeche, K. Aoutou, S. Younsi, R. Amour, Nonlinear positron acoustic solitary waves. Phys. Plasmas 16(7), 072103 (2009)

  29. S.A. El-Tantawy, N.A. El-Bedwehy, S. Khan, S. Ali, W.M. Moslem, Arbitrary amplitude ion-acoustic solitary waves in superthermal electron-positron-ion magnetoplasma. Astrophys. Space Sci. 342, 425–432 (2012)

    Article  ADS  Google Scholar 

  30. R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostreom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  31. D. Ali-Fedela, H. Marif, M. Djebli, Arbitrary amplitude ion-acoustic waves in a plasma with nonthermal electrons. Adv. Space Res. 45, 785 (2010)

    Article  ADS  Google Scholar 

  32. B. Ghosh, S. Banerjee, S.N. Paul, Effect of non-thermal electrons and warm negative ions on ion-acoustic solitary waves in multi-component drifting plasma. Indian J. Pure Appl. Phys. 51, 488 (2013)

    Google Scholar 

  33. H.R. Pakzad, Ion acoustic solitary waves in plasma with nonthermal electron, positron and warm ion. Astrophys. Space Sci. 323, 345–350 (2009)

    Article  ADS  Google Scholar 

  34. Y.N. Nejoh, Positron-acoustic waves in an electron-positron plasma with an electron beam. Aust. J. Phys. 49, 967 (1996)

    Article  ADS  Google Scholar 

  35. E.F. El-Shamy, N.A. El-Bedwehy, On the linear and nonlinear characteristics of electrostatic solitary waves propagating in magnetized electron-positron-ion plasmas. Phys. Lett. A 374, 4425 (2010)

    Article  ADS  Google Scholar 

  36. N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  37. J.N. Han, S.C. Li, X.X. Yang, W.S. Duan, Head-on collision of ion-acoustic solitary waves in an unmagnetized electron-positron-ion plasma. Eur. Phys. J. D 47, 197 (2008)

    Article  ADS  Google Scholar 

  38. S.K. El-Labany, E.F. El-Shamy, W.F. El-Taibany, P.K. Shukla, Head-on collision of quantum ion-acoustic solitary waves in a dense electron-positron-ion plasma. Phys. Lett. A 374, 960 (2010)

    Article  ADS  Google Scholar 

  39. P.R.Chatterjee, K. Ghosh, U.N. Muniandy, S.V. Wong, C.S.B. Sahu, Head-on collision of ion acoustic solitary waves in an electron-positron-ion plasma with superthermal electrons. Phys. Plasmas 17, 122314 (2010)

  40. E.F. El-Shamy, Head-on collisions of two electrostatic solitary waves in electron-positron-ion plasmas. IEEE Trans. Plasma Sci. 38, 909 (2010)

    Article  ADS  Google Scholar 

  41. M. Akbari-Moghanjoughi, Propagation and head-on collisions of ion-acoustic solitons in a Thomas-Fermi magnetoplasma: Relativistic degeneracy effects. Phys. Plasmas 7, 072101 (2010)

  42. N.A. Chowdhury, A. Mannan, M.R. Hossen, A.A. Mamun, Modulational instability and generation of envelope solitons in four-component space plasmas. Contrib. Plasma Physics 58(9), 870–877 (2018)

    Article  ADS  Google Scholar 

  43. R.A. Cairns, R. Bingham, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, A.A. Mamun, Ion sound solitary waves with density depressions. J. Phys. (France) IV 5 C6-43 (1995)

  44. V.M. Vasyliunas, Low-energy electrons on the day side of the magnetosphere. J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  45. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  46. C.S. Garder, J.M. Green, M.D. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  47. M. Wadati, K. Konno, Y.H. Ichikawa, A generalization of inverse scattering method. J. Phys. Soc. Jpn. 46, 965 (1979)

    Article  MathSciNet  Google Scholar 

  48. X.B. Hu, Bäcklund transformation and nonlinear superposition formula of a modified Korteweg-de-Vries type bilinear equation. J. Math. Phys. A 35, 4379 (1994)

    Google Scholar 

  49. M. Wadati, H. Sanuki, K. Konno, Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419 (1975)

    Article  ADS  Google Scholar 

  50. V.B. Matveev, M.A. Salle, Darboux transformations and solitons. (Springer-Verlag, Berlin, 1991)

  51. C. Lavanya, Propagation of ion-acoustic localized mode excitations and their modulational instability analysis in electron-positron-ion plasmas. Indian J. Phys. 95, 2217–2230 (2021)

    Article  ADS  Google Scholar 

  52. N.C. Freeman, J.J.C. Nimmo, Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lavanya.

Ethics declarations

Conflicts of Interest

The author declares that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, C. Propagation and Soliton Collision of Positron Acoustic Waves in Four-component Space Plasmas. Braz J Phys 52, 38 (2022). https://doi.org/10.1007/s13538-021-01036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01036-w

Keywords

Navigation