Skip to main content
Log in

Numerical Study and FPGA Implementation of a New 3D Chaotic System

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A new 3D chaotic system with only one nonlinear term is constructed in this paper, which has conservative and dissipative features respectively by choosing different parameters. The complex dynamic behaviors of the system are analyzed theoretically and numerically by using nonlinear analytical tools, such as Lyapunov exponents, phase portraits, and bifurcation diagrams. In a certain range of parameters, the new system is a non-Hamiltonian conservative chaotic system, which can produce infinitely many coexisting conservative flows. With the variation of parameters, the divergence of the system is less than zero, and the system can also generate hidden and self-excited attractors with multi-scroll. To verify the feasibility of the new system, it has been implemented by field-programmable gate array; phase diagrams obtained in the experiment are consistent with the simulation of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.N. Lorenz, Deterministic nonperiodic flow [J]. J. Atmos. Sci. 20(2), 130141(1963)

  2. G. Chen, Yet another chaotic attractor [J]. Int. J. Bifur. chaos 9(7), 1465–1466 (1999). https://doi.org/10.1142/S0218127499001024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C. Li, J.C. Sprott, W. Hu et al., Infinite multistability in a self-reproducing chaotic system [J]. Int. J. Bifur. Chaos 27(10), 1750160(2017). https://doi.org/10.1142/S0218127417501607

  4. G. Qi, J. Hu, Modelling of both energy and volume conservative chaotic systems and their mechanism analyses [J]. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020). https://doi.org/10.1016/j.cnsns.2020.105171

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Vaidyanathan, E. Tlelo-Cuautle et al., A new conservative chaotic dynamical system with lemniscate equilibrium, its circuit model and FPGA implementation [J]. Int. J. Autom. Control 15(2), 128–148 (2021). https://doi.org/10.1504/IJAAC.2021.113337

    Article  Google Scholar 

  6. S. Cang, A. Wu, Z. Wang et al., On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows [J]. Chaos Solit. Fractals 99, 45–51 (2017). https://doi.org/10.1016/j.chaos.2017.03.046

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Q. Lai, T. Nestor, J. Kengne et al., Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria [J]. Chaos Solit. Fractals 107, 92–102 (2018). https://doi.org/10.1016/j.chaos.2017.12.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. V.R.F. Signing, J. Kengne, L.K. Kana, Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity [J]. Chaos Solit. Fractals 113, 263–274 (2018). https://doi.org/10.1016/j.chaos.2018.06.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. Zhang, X. Wang, Z. Zeng, A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation [J]. Chaos: An Interdisc. J. Nonlinear Sci. 30(5), 053129(2020). https://doi.org/10.1063/5.0008875

  10. V.T. Pham, S. Jafari, T. Kapitaniak et al., Generating a chaotic system with one stable equilibrium [J]. Int. J. Bifur. Chaos 27(04), 1750053(2017). https://doi.org/10.1142/S0218127417500535

  11. S. Jafari, J.C. Sprott, Simple chaotic flows with a line equilibrium [J]. Chaos Solit. Fractals 57, 79–84 (2013). https://doi.org/10.1016/j.chaos.2013.08.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Li, J.C. Sprott, W. Thio, Bistability in a hyperchaotic system with a line equilibrium [J]. J. Exp. Theor. Phys. 118(3), 494–500 (2014). https://doi.org/10.1134/S1063776114030121

    Article  ADS  Google Scholar 

  13. J.C. Sprott, Some simple chaotic flows [J]. Phys. Rev. E 50(2), R647–R650 (1994). https://doi.org/10.1103/PhysRevE.50.R647

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Vaidyanathan, C. Volos, Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system [J]. Arch. Cont. Sci. 25(3), 333–353 (2015). https://doi.org/10.1515/acsc-2015-0022

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Jafari, V.T Pham, T. Kapitaniak, Multiscroll chaotic sea obtained from a simple 3D system without equilibrium [J]. Int. J. Bifur. Chaos 26(02), 1650031(2016). https://doi.org/10.1142/S0218127416500310

  16. G. Qi, J. Zhang, Energy cycle and bound of Qi chaotic system [J]. Chaos, Solitons Fractals 99, 7–15 (2017). https://doi.org/10.1016/j.chaos.2017.03.044

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Cang, A. Wu, Z. Wang et al., Four-dimensional autonomous dynamical systems with conservative flows: two-case study [J]. Nonlinear Dyn. 89(4), 2495–2508 (2017). https://doi.org/10.1007/s11071-017-3599-6

    Article  MathSciNet  Google Scholar 

  18. S. Gu, B. Du, Y. Wan, A new four-dimensional non-Hamiltonian conservative hyperchaotic system [J]. Int. J. Bifur. Chaos 30(16), 2050242(2020). https://doi.org/10.1142/S0218127420502429

  19. N. Wang, G. Zhang, H. Bao, Infinitely many coexisting conservative flows in a 4D conservative system inspired by LC circuit [J]. Nonlinear Dyn. 99(4), 3197–3216 (2020). https://doi.org/10.1007/s11071-020-05465-1

    Article  Google Scholar 

  20. E. Dong, M. Yuan, S. Du et al., A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator [J]. Appl. Math. Model. 73, 40–71 (2019). https://doi.org/10.1016/j.apm.2019.03.037

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Cang, Y. Li, Z. Kang et al., Generating multicluster conservative chaotic flows from a generalized Sprott-A system [J]. Chaos Solit. Fractals 133, 109651 (2020). https://doi.org/10.1016/j.chaos.2020.109651

    Article  MathSciNet  Google Scholar 

  22. Q. Lai, X.W. Zhao, K. Rajagopal et al., Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system [J]. Pramana 90(1), 1–12 (2018). https://doi.org/10.1007/s12043-017-1493-x

    Article  ADS  Google Scholar 

  23. Q. Xie, Y. Zeng, Generating different types of multi-double-scroll and multi-double-wing hidden attractors [J]. European Phys. J. Spec. Topics 229, 1361–1371 (2020). https://doi.org/10.1140/epjst/e2020-900223-9

    Article  ADS  Google Scholar 

  24. Q. Yang, X. Qiao, Constructing a new 3D chaotic system with any number of equilibria [J]. Int. J. Bifur. Chaos 29(05), 1950060(2019). https://doi.org/10.1142/S0218127419500603

  25. H. Lin, C. Wang, F. Yu et al., An extremely simple multi-wing chaotic system: dynamics analysis, encryption application and hardware implementation [J]. IEEE Trans. Industr. Electron. (2020). https://doi.org/10.1109/TIE.2020.3047012

    Article  Google Scholar 

  26. K. Rajagopal, J.P. Singh, B.K. Roy et al., Dissipative and conservative chaotic nature of a new quasi-periodically forced oscillator with megastability [J]. Chin. J. Phys. 58, 263–272 (2019). https://doi.org/10.1016/j.cjph.2019.02.003

    Article  Google Scholar 

  27. K. Rajagopal, J.P. Singh, A. Akgul et al., A novel dissipative and conservative megastable oscillator with engineering applications [J]. Mod. Phys. Lett. B 2150007(2020). https://doi.org/10.1142/S021798492150007X

  28. S. Cang, Y. Li, W. Xue et al., Conservative chaos and invariant tori in the modified Sprott A system [J]. Nonlinear Dyn. 99(2), 1699–1708 (2020). https://doi.org/10.1007/s11071-019-05385-9

    Article  MATH  Google Scholar 

  29. S. Jafari, V,T. Pham, T. Kapitaniak, Multiscroll chaotic sea obtained from a simple 3D system without equilibrium [J]. Int J. Bifur. Chaos 26(02), 1650031(2016). https://doi.org/10.1142/S0218127416500310

  30. A. Wu, S. Cang, R. Zhang et al., Hyperchaos in a conservative system with nonhyperbolic fixed points [J]. Complexity 2018(2018). https://doi.org/10.1155/2018/9430637

  31. J.P. Singh, B.K. Roy, Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria [J]. Chaos Solit. Fractals 114, 81–91 (2018). https://doi.org/10.1016/j.chaos.2018.07.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. B. Bao, F. Hu, M. Chen et al., Self-excited and hidden attractors found simultaneously in a modified Chua’s circuit [J]. Int J. Bifur. Chaos 25(05), 1550075(2015). https://doi.org/10.1142/S0218127415500753

  33. C. Li, J.C. Sprott, Finding coexisting attractors using amplitude control [J]. Nonlinear Dyn. 78(3), 2059–2064 (2014). https://doi.org/10.1007/s11071-014-1568-x

    Article  MathSciNet  Google Scholar 

  34. Q. Lai, C. Chen, X.W. Zhao et al., Constructing chaotic system with multiple coexisting attractors [J]. IEEE Access 7, 24051–24056 (2019). https://doi.org/10.1109/ACCESS.2019.2900367

    Article  Google Scholar 

  35. X. Peng, Y. Zeng, Image encryption application in a system for compounding self-excited and hidden attractors [J]. Chaos Solit. Fractals 139, 110044 (2020). https://doi.org/10.1016/j.chaos.2020.110044

    Article  MathSciNet  Google Scholar 

  36. E.Z. Dong, R.H. Li, S.Z. Du, A multi-directional controllable multi-scroll conservative chaos generator: modelling, analysis, and FPGA implementation [J]. Chin Phys B 30(2), 020505(2021). https://doi.org/10.1088/1674-1056/abc239

Download references

Funding

This work was supported by the National Natural Science Foundations of China under Grant No. 62071411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zeng, Y. & Gao, J. Numerical Study and FPGA Implementation of a New 3D Chaotic System. Braz J Phys 51, 1884–1896 (2021). https://doi.org/10.1007/s13538-021-00990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00990-9

Keywords

Navigation