Skip to main content

Advertisement

Log in

Revisiting the Gravitational Energy of the Schwarzschild Spacetime with a New Approach to the Calculations

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Recently, a new method to simplify calculations in teleparallel theories has been put forward. In this article, this method is improved and used to analyze the gravitational energy–momentum tensor (density) of the Schwarzschild solution in a frame that is arbitrarily accelerated along the z-direction. It is shown that, for a special type of frame, one cannot make the gravitational energy density vanish along the observer’s worldline, regardless of the observer’s acceleration. The role played by the frame and its relation to the observers’ worldlines are investigated. It is shown that, for the aforementioned special frames, the results for the gravitational energy and angular momenta are consistent with what we would expect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It corresponds to the Levi-Civita connection in the tetrad basis.

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915, 778 (1915)

    Google Scholar 

  2. A. Papapetrou, Proc. R. Irish Acad. (Sect. A) 52, 11 (1948)

    MathSciNet  Google Scholar 

  3. P.G. Bergmann, R. Thomson, Phys. Rev. 89, 400 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Møller, Ann. Phys. 12(1), 118 (1961)

    Article  ADS  Google Scholar 

  5. L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields, vol. 2, 4th edn. (Pergamon Press, Oxford, 1975)

    Google Scholar 

  6. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley and Sons, New York, 1972)

    Google Scholar 

  7. R. Aldrovandi, J. Pereira, Teleparallel Gravity: An Introduction (Springer, London, 2012)

    MATH  Google Scholar 

  8. J.W. Maluf, Ann. Phys. (Berlin) 525(5), 339 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y.F. Cai, S. Capozziello, M.D. Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79(10), 106901 (2016)

    Article  ADS  Google Scholar 

  11. C.Q. Geng, L.W. Luo, Class. Quantum Grav. 34(11), 115012 (2017)

    Article  ADS  Google Scholar 

  12. J.G. Silva, A.F. Santos, S.C. Ulhoa, Eur. Phys. J. C 76, 1434 (2016)

    Google Scholar 

  13. J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.W. Maluf, S.C. Ulhoa, J.F. da Rocha-Neto, Phys. Rev. D 85, 044050 (2012)

    Article  ADS  Google Scholar 

  15. F. Hammad, D. Dijamco, A. Torres-Rivas, D. Bérubé, Phys. Rev. D 100, 124040 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. J.W. Maluf, S.C. Ulhoa, Phys. Rev. D 78, 047502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.N. Obukhov, J.G. Pereira, G.F. Rubilar, Class. Quantum Grav. 26(21), 215014 (2009)

    Article  ADS  Google Scholar 

  18. J.B. Formiga, Ann. Phys. (Berlin) 530(12), 1800320 (2018)

    Article  ADS  Google Scholar 

  19. S.S. Xulu, Int. J. Theor. Phys. 39, 1153 (2000)

    Article  MathSciNet  Google Scholar 

  20. T. Vargas, Gen. Rel. Grav. 36(6), 1255 (2004)

    Article  ADS  Google Scholar 

  21. A.A. Sousa, J.S. Moura, R.B. Pereira, Braz. J. Phys 40, 1 (2010)

    Article  ADS  Google Scholar 

  22. S.C. Ulhoa, J.F. da Rocha Neto, J.W. Maluf, Int. J. Mod. Phys. D 19(12), 1925 (2010)

    Article  ADS  Google Scholar 

  23. H. Abedi, A.M. Abbassi, S. Capozziello, Ann. Phys. 405, 54 (2019)

    Article  ADS  Google Scholar 

  24. J.B. Formiga, Ann. Phys. (Berlin) 532(3), 1900507 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.B. Formiga, The meaning of torsion in teleparallel theories (2020) arXiv:2004.10788v2

  26. J.B. Formiga, V.R. GonSalves, Mod. Phys. Lett. A 36(18), 2150125 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Formiga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Applying the Hybrid Machinery to Eqs. (42)–(45)

In this appendix we give the torsion tensor, the superpotential, the torsion scalar, and the quantity \(\Sigma ^{\lambda \mu \nu }T_{\lambda \mu \alpha }\) in terms of the tetrad given by Eq. (24) with \(\{\hat{t}_\lambda ,\hat{s}_\lambda ,\hat{\phi }_\lambda ,\hat{z}_\lambda \}\) given by Eqs. (42)–(45).

By inverting Eqs. (42)–(45), we get

$$\begin{aligned} \delta _\lambda ^0=\frac{1}{A}\left(f\hat{t}_\lambda -g\hat{z}_\lambda\right ), \end{aligned}$$
(57)
$$\begin{aligned} \delta _\lambda ^1=\frac{1}{B}\left(g\cos \theta \hat{t}_\lambda -\sin \theta \hat{s}_\lambda -f\cos \theta \hat{z}_\lambda\right ), \end{aligned}$$
(58)
$$\begin{aligned} \delta _\lambda ^2=\frac{1}{\rho B}\left(-g\sin \theta \hat{t}_\lambda -\cos \theta \hat{s}_\lambda +f\sin \theta \hat{z}_\lambda\right), \end{aligned}$$
(59)
$$\begin{aligned} \delta _\lambda ^3=-\frac{\hat{\phi }_\lambda ,}{\rho B\sin \theta }. \end{aligned}$$
(60)

We can simplify the calculations by using the following definitions:

$$\begin{aligned} h_1\equiv A{\partial }{_z}f+B{\partial }{_t}g,\ h_2\equiv h_1\cos \theta + f{\partial }{_\rho }A, \\ h_3\equiv A{\partial }{_z}g+B{\partial }{_t}\kern 0.14emf,\ h_4\equiv h_3\cos \theta +g{\partial }{_\rho }A, \\ h_5\equiv \frac{{\partial }{_\rho }A}{AB},\ h_6\equiv \frac{{\partial }{_\rho }B}{B^2}, \\ h_7\equiv \left(\kern 0.14emf^2h_5-g^2h_6\right)\sin \theta ,\ h_8\equiv \frac{h_1}{AB}+fh_5\cos \theta , \\ h_9\equiv (h_5-h_6)fg\sin \theta ,\ h_{10}\equiv \frac{h_3}{AB}+gh_5\cos \theta , \\ h_{11}\equiv (\kern 0.14emf^2h_6-g^2h_5)\sin \theta ,\ h_{12}\equiv h_6g\cos \theta , \\ h_{13}\equiv h_6\sin \theta ,\ h_{14}\equiv h_6\kern 0.14emf\cos \theta , \\ h_{15}\equiv h_{11}+h_{13},\ h_{16}\equiv h_{10}+h_{12}, \\ h_{17}\equiv h_7+h_{11},\ h_{18}\equiv h_8+h_{14}, \\ h_{19}\equiv h_7+h_{13},\ f\partial _{\mu }\kern 0.14emf=g\partial _\mu g. \end{aligned}$$
(61)

Substituting Eqs. (42)–(45) and (60) into Eqs. (28)–(31), we obtain

$$\begin{aligned} T^{(0)}{_{\mu\nu}}=&-2h_2\delta ^0_{[\mu }\delta ^1_{\nu ]}+2h_1\rho \sin \theta \delta ^0_{[\mu }\delta ^2_{\nu ]} \\&+2g\rho ({\partial }{_\rho }B)\sin \theta \delta ^1_{[\mu }\delta ^2_{\nu ]}, \end{aligned}$$
(62)
$$\begin{aligned} T^{\hat{s}}{_{\mu\nu}}=&-2\rho ({\partial }{_\rho }B)\cos \theta \delta ^1_{[\mu }\delta ^2_{\nu ]}, \end{aligned}$$
(63)
$$\begin{aligned} T^{\hat{\phi}}{_{\mu\nu}}=&-2{\partial }{_\rho }(\rho B)\sin \theta \delta ^1_{[\mu }\delta ^3_{\nu ]}-2\rho B\cos \theta \delta ^2_{[\mu }\delta ^3_{\nu ]} \\&+2\delta ^3_{[\mu }\hat{s}_{\nu ]}, \end{aligned}$$
(64)
$$\begin{aligned} T^{\hat{z}}{_{\mu\nu}}=&-2h_4\delta ^0_{[\mu }\delta ^1_{\nu ]}+2h_3\rho \sin \theta \delta ^0_{[\mu }\delta ^2_{\nu ]} \\&+2({\partial }{_\rho }B)f\rho \sin \theta \delta ^1_{[\mu }\delta ^2_{\nu ]}. \end{aligned}$$
(65)

To write the torsion components in terms of \(\{\hat{t}_\lambda ,\hat{s}_\lambda ,\hat{\phi }_\lambda ,\hat{z}_\lambda \}\), we use Eqs. (57)–(60). From these equations, one can check that

$$\begin{aligned} \delta ^0_{[\mu }\delta ^1_{\nu ]}=&\ \frac{-1}{AB}\bigl( f\sin \theta \hat{t}_{[\mu }\hat{s}_{\nu ]}+\cos \theta \hat{t}_{[\mu }\hat{z}_{\nu ]} \\&+g\sin \theta \hat{s}_{[\mu }\hat{z}_{\nu ]}\bigr), \end{aligned}$$
(66)
$$\begin{aligned} \delta ^0_{[\mu }\delta ^2_{\nu ]}=&\ \frac{1}{\rho AB}( -f\cos \theta \hat{t}_{[\mu }\hat{s}_{\nu ]}+\sin \theta \hat{t}_{[\mu }\hat{z}_{\nu ]} \\&-g\cos \theta \hat{s}_{[\mu }\hat{z}_{\nu ]}), \end{aligned}$$
(67)
$$\begin{aligned} \delta ^1_{[\mu }\delta ^2_{\nu ]}=&\ \frac{-1}{\rho B^2}\left(g\hat{t}_{[\mu }\hat{s}_{\nu ]}+f\hat{s}_{[\mu }\hat{z}_{\nu ]} \right), \end{aligned}$$
(68)
$$\begin{aligned} \delta ^1_{[\mu }\delta ^3_{\nu ]}=&\ \frac{1}{\rho B^2\sin \theta }( -g\cos \theta \hat{t}_{[\mu }\hat{\phi }_{\nu ]}+\sin \theta \hat{s}_{[\mu }\hat{\phi }_{\nu ]} \\&-f\cos \theta \hat{\phi }_{[\mu }\hat{z}_{\nu ]}), \end{aligned}$$
(69)
$$\begin{aligned} \delta ^2_{[\mu }\delta ^3_{\nu ]}=&\ \frac{1}{\rho ^2 B^2\sin \theta }( g\sin \theta \hat{t}_{[\mu }\hat{\phi }_{\nu ]}+\cos \theta \hat{s}_{[\mu }\hat{\phi }_{\nu ]} \\&+f\sin \theta \hat{\phi }_{[\mu }\hat{z}_{\nu ]} ), \end{aligned}$$
(70)
$$\begin{aligned} \delta ^3_{[\mu }\hat{s}_{\nu ]}=&\ \frac{\hat{s}_{[\mu }\hat{\phi }_{\nu ]}}{\rho B\sin \theta }. \end{aligned}$$
(71)

By substituting Eqs. (66)–(71) into Eqs. (62)–(65) and simplifying, we find that

$$\begin{aligned} T^{(0)}{_{\mu\nu}}=&\ 2h_7\hat{t}_{[\mu }\hat{s}_{\nu ]}+2h_8\hat{t}_{[\mu }\hat{z}_{\nu ]}+2h_9\hat{s}_{[\mu }\hat{z}_{\nu ]}, \end{aligned}$$
(72)
$$\begin{aligned} T^{\hat{s}}{_{\mu\nu}}=&\ 2h_6\cos \theta \left( g\hat{t}_{[\mu }\hat{s}_{\nu ]}+f\hat{s}_{[\mu }\hat{z}_{\nu ]} \right) , \end{aligned}$$
(73)
$$\begin{aligned} T^{\hat{\phi}}{_{\mu\nu}}=&\ 2h_6(g\cos \theta \hat{t}_{[\mu }\hat{\phi }_{\nu ]}-\sin \theta \hat{s}_{[\mu }\hat{\phi }_{\nu ]} \\&+f\cos \theta \hat{\phi }_{[\mu }\hat{z}_{\nu ]} ), \end{aligned}$$
(74)
$$\begin{aligned} T^{\hat{z}}{_{\mu\nu}}=&\ 2h_9\hat{t}_{[\mu }\hat{s}_{\nu ]}+2h_{10}\hat{t}_{[\mu }\hat{z}_{\nu ]}-2h_{11}\hat{s}_{[\mu }\hat{z}_{\nu ]}. \end{aligned}$$
(75)

Substituting these equations into Eq. (27) and manipulating the result yield

$$\begin{aligned} T^{\lambda \mu \nu }=&\ 2\left(h_7\hat{t}{^\lambda} -h_{12}\hat{s}{^\lambda} -h_9\hat{z}{^\lambda} \right)\hat{t}{^{[\mu}}\hat{s}{^{\nu ]}} \\&-2h_{12}\hat{\phi }{^\lambda} \hat{t}{^{[\mu }}\hat{\phi }{^{\nu ]}}+2\left(h_8\hat{t}{^\lambda} -h_{10}\hat{z}{^\lambda} \right)\hat{t}{^{[\mu }}\hat{z}{^{\nu ]}} \\&+2h_{13}\hat{\phi }^\lambda \hat{s}{^{[\mu }}\hat{\phi }{^{\nu ]}}+2\left(h_9\hat{t}{^\lambda} -h_{14}\hat{s}{^\lambda} +h_{11}\hat{z}{^\lambda} \right)\hat{s}{^{[\mu }}\hat{z}{^{\nu ]}} \\&-2h_{14}\hat{\phi }{^\lambda} \hat{\phi }{^{[\mu }}\hat{z}{^{\nu ]}}. \end{aligned}$$
(76)

Rearranging the terns on the right-hand side of Eq. (76), one can verify that \(2T^{[\mu|\lambda|\nu]}=T^{\lambda \mu \nu }\).

From Eqs. (72)–(75), it is possible to show that

$$\begin{aligned} T^{(0)}{_{a\nu}}\hat{t}^a=h_7\hat{s}_\nu +h_8\hat{z}_\nu , \end{aligned}$$
(77)
$$\begin{aligned} T^{\hat{s}}{_{a\nu}}\hat{s}{^a}=h_{12}\hat{t}_\nu -h_{14}\hat{z}_\nu , \end{aligned}$$
(78)
$$\begin{aligned} T^{\hat{\phi}}{_{a\nu}}\hat{\phi }{^a}=h_{12}\hat{t}_\nu -h_{13}\hat{s}_\nu -h_{14}\hat{z}_\nu , \end{aligned}$$
(79)
$$\begin{aligned} T^{\hat{z}}{_{a\nu}}\hat{z}^a=h_{10}\hat{t}_\nu -h_{11}\hat{s}_\nu . \end{aligned}$$
(80)

Using these equations, Eq. (27), and the definition \(T_{\nu }=T{^a}{_{a\nu}}\), we obtain

$$\begin{aligned} T^{\nu}=&-(h_{10}+2h_{12})\hat{t}{^\nu} +(h_{17}+h_{13})\hat{s}{^\nu} \\&+(h_8+2h_{14})\hat{z}{^\nu} . \end{aligned}$$
(81)

From this expression and Eq. (32), we find that

$$\begin{aligned} g^{\lambda [\nu }T^{\mu ]}=&\ \left[ -\left(h_{17}+h_{13}\right)\hat{t}{^\lambda} +\left(h_{10}+2h_{12}\right)\hat{s}{^\lambda} \right] \hat{t}{^{[\mu}}\hat{s}{^{\nu ]}} \\&+\left(h_{10}+2h_{12}\right)\hat{\phi }{^\lambda} \hat{t}{^{[\mu}}\hat{\phi }{^{\nu]}} \\&+\left[ -\left(h_8+2h_{14}\right)\hat{t}{^\lambda} +\left(h_{10}+2h_{12}\right)\hat{z}{^\lambda} \right] \hat{t}{^{[\mu}}\hat{z}{^{\nu]}} \\&-\left(h_{17}+h_{13}\right)\hat{\phi }{^\lambda} \hat{s}{^{[\mu}}\hat{\phi }{^{\nu]}} \\&+\left[ \left(h_8+2h_{14}\right)\hat{s}{^\lambda} -\left(h_{17}+h_{13}\right)\hat{z}{^\lambda} \right] \hat{s}{^{[\mu }}\hat{z}{^{\nu ]}} \\&+\left(h_8+2h_{14}\right)\hat{\phi }{^\lambda} \hat{\phi }{^{[\mu}}\hat{z}{^{\nu ]}}. \end{aligned}$$
(82)

Finally, by substituting Eqs. (82) and (76) into Eq. (2) (remember that \(2T^{[\mu|\lambda|\nu]}=T^{\lambda \mu \nu }\)), we arrive at

$$\begin{aligned} \Sigma ^{\lambda \mu \nu }=&\ \left( -h_{15}\hat{t}{^\lambda} +h_{16}\hat{s}{^\lambda} -h_9\hat{z}{^\lambda} \right) \hat{t}{^{[\mu}}\hat{s}^{\nu ]} +h_{16}\hat{\phi }{^\lambda} \hat{t}{^{[\mu}}\hat{\phi }{^{\nu ]}} \\&+2\left( -h_{14}\hat{t}{^\lambda} +h_{12}\hat{z}{^\lambda} \right) \hat{t}{^{[\mu}}\hat{z}{^{\nu]}}-h_{17}\hat{\phi }{^\lambda} \hat{s}{^{[\mu}}\hat{\phi }{^{\nu]}} \\&+\left( h_9\hat{t}{^\lambda} +h_{18}\hat{s}{^\lambda} -h_{19}\hat{z}{^\lambda} \right) \hat{s}{^{[\mu}}\hat{z}{^{\nu]}}+h_{18}\hat{\phi }{^\lambda} \hat{\phi }{^{[\mu}}\hat{z}{^{\nu]}}. \end{aligned}$$
(83)

To calculate the gravitational angular momentum density, we need the component \(\Sigma ^{a0b}\). From Eqs. (83), (61), and Eqs. (38)–(41), we obtain

$$\begin{aligned} \Sigma ^{a0b}=&-\frac{h_6}{A}\left(f\hat{t}{^a}-g\hat{z}{^a}\right)\left [\sin \theta \hat{s}{^b}-\cos \theta \left(g\hat{t}{^b}-f\hat{z}{^b}\right) \right ] \\&+\frac{(\partial _zg)}{2ABf}\left(\hat{s}{^a}\hat{s}{^b}+\hat{\phi }{^a}\hat{\phi }{^b}\right), \end{aligned}$$
(84)

where we have used the identities \(fh_{16}-gh_{18}=({\partial }{_z}g)/(fB)\), \(fh_{15}+gh_9=2fh_6\sin \theta\) and \(gh_{19}-fh_9=2gh_6\sin \theta\).

To evaluate \(\Sigma ^{\lambda \mu \nu }T_{\lambda\mu\alpha}\), it is convenient to proceed in the following manner: Let X, Y, and Z be elements in \(\{\hat{t}{^a},\hat{s},\hat{\phi },\hat{z}\}\); assume that X is different from both Y and Z. From the orthonormality condition, we see that

$$\begin{aligned} X^{[\mu }Y^{\nu ]}X_{[\mu }Z_{\alpha ]}=\frac{1}{4}(X^aX_a)Y^\nu Z_\alpha +\frac{1}{4}(Y^aZ_a)X^\nu X_\alpha . \end{aligned}$$
(85)

We can use this identity to obtain, after a lengthy calculation, the expression

$$\begin{aligned} \Sigma ^{\lambda \mu \nu }T_{\lambda \mu \alpha}=&\ \left(\frac{h_9^2}{2}+\frac{h_7h_{15}}{2}+h_8h_{14}-h_{12}^2-2h_{10}h_{12}\right)\hat{t}{^\nu} \hat{t}_\alpha \\&+\frac{1}{2}\Bigl(-2h_9^2-h_7h_{15}-h_{14}h_{18}+h_{12}h_{16} \\&-h_{13}h_{17}-h_{11}h_{19} \Bigr)\hat{s}{^\nu} \hat{s}_\alpha +\frac{1}{2}\bigl(h_{12}h_{16} \\&-h_{13}h_{17}-h_{14}h_{18}\bigr )\hat{\phi }{^\nu} \hat{\phi }_\alpha -\Biggl(\frac{h_9^2}{2}+\frac{h_{11}h_{19}}{2} \\&+h_{14}^2+2h_8h_{14}-h_{10}h_{12} \Biggr)\hat{z}{^\nu} \hat{z}_\alpha +\Biggl(\frac{h_{13}h_{16}}{2} \\&+h_9h_{14}+h_{11}h_{12}\Biggr)\hat{t}{^\nu} \hat{s}_\alpha +\frac{1}{2}\bigl(h_{12}h_{17}-h_8h_9 \\&+h_{10}h_{19}\bigr)\hat{s}^\nu \hat{t}_\alpha +\left(h_{14}h_{16}-\frac{h_9h_{13}}{2}\right)\hat{t}{^\nu} \hat{z}_\alpha \\&+\left(h_{12}h_{18}-\frac{h_9h_{13}}{2}\right)\hat{z}^\nu \hat{t}_\alpha -\frac{1}{2}\bigl(h_8h_{15}+h_{10}h_9 \\&+h_{14}h_{17}\bigr)\hat{s}^\nu \hat{z}_\alpha +\Biggl(-h_7h_{14}+h_9h_{12} \\&-\frac{h_{13}h_{18}}{2}\Biggr)\hat{z}^\nu \hat{s}_\alpha \end{aligned}$$
(86)

Contracting \(\nu\) with \(\alpha\) and using (61) to eliminate \(h_{18}\) and \(h_{16}\), we find that

$$\begin{aligned} T=&\ 2h_9^2+h_7h_{15}+4h_8h_{14}+2h_{14}^2-2h_{12}^2 \\&-4h_{10}h_{12}+h_{13}h_{17}+h_{11}h_{19}. \end{aligned}$$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formiga, J.B. Revisiting the Gravitational Energy of the Schwarzschild Spacetime with a New Approach to the Calculations. Braz J Phys 51, 1823–1832 (2021). https://doi.org/10.1007/s13538-021-00975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00975-8

Keywords

Navigation