Skip to main content
Log in

Optimization and Design of Cutting-Edge-Technology Tools for Natural Sciences Research in the Twenty-First Century: X-Ray Free Electron Lasers

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Regarding the chronologic evolution of accelerator-based light sources, optimization and design issues of cutting-edge-technology insertion devices (i.e., undulators, wigglers, etc.) have been a big competitive concern since the beginning of the twenty-first century. Although these sources are strongly restricted by technological limitations in terms of radiation wavelength, leading X-ray free-electron laser (FEL) facilities are spending considerable efforts to survive in this scientific competition by modifying/updating their insertion devices. In other words, even though they all generate almost identical free-electron laser pulses, advertising a “superconducting undulator based light source” in comparison with a “conventional undulator based light source” may sound more attractive for some scientists. However, in contrast to superconducting undulators, conventional undulators do not require cryogenic cooling systems resulting in a cost-effective operation as a matter of course. Under the circumstances, it is shown that generation of hard X-ray FEL pulses is feasible via unique PPM undulators driven by an electron linear accelerator (linac) within the energy range of 5–10 GeV. The results reveal good consistency with the operating X-ray FEL sources worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Haensel, Nucl. Instr. Methods Phys. Res. A 303, 405 (1991). https://doi.org/10.1016/0168-9002(91)90278-X

    Article  ADS  Google Scholar 

  2. I. Ascone et al., 2004 PETRA III: A Low Emittance Synchrotron Radiation Source Technical Design Report, EDMS ID: D00000000822371, A 1 1

  3. R.E. Gerig et al., Nucl. Instr. Methods Phys. Res. A 649, 1 (2011). https://doi.org/10.1016/j.nima.2010.12.063

    Article  ADS  Google Scholar 

  4. T. Shintake and XFEL/Spring-8 Team. In Proceedings of the 29th International Free Electron Laser Conference (FEL07), Novosibirsk, Russia. pp. 216–219

  5. P. Elleaume, J. Chavanne, B. Faatz, Nucl. Instr. Methods Phys. Res. A 455, 503 (2000). https://doi.org/10.1016/S0168-9002(00)00544-1

    Article  ADS  Google Scholar 

  6. M. Xie, Design Optimization for an X-Ray Free Electron Laser Driven by SLAC Linac (Calif, Berkeley, 1996).

    Google Scholar 

  7. U. Englisch, B. Ketenoglu, Meas. Sci. Technol. 31, 115902 (2020). https://doi.org/10.1088/1361-6501/ab90bd

    Article  ADS  Google Scholar 

  8. T. Tanaka, J. Synchrotron Radiat. 22, 1319 (2015). https://doi.org/10.1107/S1600577515012850

    Article  Google Scholar 

  9. B. Ketenoglu, O. Yavas, Optik-Ijleo 123, 1006 (2012). https://doi.org/10.1016/j.ijleo.2011.07.018

    Article  ADS  Google Scholar 

  10. B. Ketenoglu, O. Yavas, Opt. Laser Technol. 44, 1083 (2012). https://doi.org/10.1016/j.optlastec.2011.10.006

    Article  ADS  Google Scholar 

  11. B. Ketenoglu, A. Aydin, O. Yavas, Can. J. Phys. 97, 1177 (2019). https://doi.org/10.1139/cjp-2018-0672

    Article  ADS  Google Scholar 

  12. M. Altarelli, Nucl. Instr. Methods Phys. Res. B 269, 2845 (2011). https://doi.org/10.1016/j.nimb.2011.04.034

    Article  ADS  Google Scholar 

  13. B. Faatz et al., Nucl. Instr. Methods Phys. Res. A 635, S2 (2011). https://doi.org/10.1016/j.nima.2010.10.065

    Article  Google Scholar 

  14. C. Limborg, Nucl. Instr. Methods Phys. Res. A. 507, 378 (2003). https://doi.org/10.1016/S0168-9002(03)00948-3

    Article  ADS  Google Scholar 

  15. M. Yabashi, H. Tanaka, T. Ishikawa, J. Synchrotron Radiat. 22, 477 (2015). https://doi.org/10.1107/S1600577515004658

    Article  Google Scholar 

  16. M. Eriksson et al., In Proceedings of the 7th International Particle Accelerator Conference (IPAC16), Busan, Korea. pp. 11–15

  17. L. Liu et al., J. Synchrotron Radiat. 21, 904 (2014). https://doi.org/10.1107/S1600577514011928

    Article  Google Scholar 

  18. L. Liu, R.T. Neuenschwander, A.R.D. Rodrigues, Phil. Trans. R. Soc. A 377, 20180235 (2019). https://doi.org/10.1098/rsta.2018.0235

    Article  ADS  Google Scholar 

  19. A. Aydin, B. Ketenoglu, E. Bostanci, Indian J. Pure Appl. Phys. 58, 635 (2020)

    Google Scholar 

  20. D. Ketenoglu, E. Bostanci, A. Aydin, B. Ketenoglu, Turk. J. Phys. 43, 551 (2019). https://doi.org/10.3906/fiz-1909-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Ketenoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketenoglu, B. Optimization and Design of Cutting-Edge-Technology Tools for Natural Sciences Research in the Twenty-First Century: X-Ray Free Electron Lasers. Braz J Phys 51, 1007–1016 (2021). https://doi.org/10.1007/s13538-021-00877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00877-9

Keywords

Navigation