Skip to main content
Log in

A Time-Dependent Harmonic Oscillator with Two Frequency Jumps: an Exact Algebraic Solution

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We consider a harmonic oscillator (HO) with a time-dependent frequency which undergoes two successive abrupt changes. By assumption, the HO starts in its fundamental state with frequency ω0, then, at t = 0, its frequency suddenly increases to ω1 and, after a finite time interval τ, it comes back to its original value ω0. Contrary to what one could naively think, this problem is quite a non-trivial one. Using algebraic methods, we obtain its exact analytical solution and show that at any time t > 0 the HO is in a vacuum squeezed state. We compute explicitly the corresponding squeezing parameter (SP) relative to the initial state at an arbitrary instant and show that, surprisingly, it exhibits oscillations after the first frequency jump (from ω0 to ω1), remaining constant after the second jump (from ω1 back to ω0). We also compute the time evolution of the variance of a quadrature. Last, but not least, we calculate the vacuum (fundamental state) persistence probability amplitude of the HO, as well as its transition probability amplitude for any excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.J. Sakurai, J. Napolitano. Modern Quantum Mechanics, 2nd Edn (Addison-Wesley, San Francisco, 2011)

    MATH  Google Scholar 

  2. D.J. Griffiths, D.F. Schroeter. Introduction to Quantum Mechanics, 3rd Edn (Cambridge University Press, Cambridge, 2018)

    MATH  Google Scholar 

  3. M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge University Press, Cambridge, 1977)

    Google Scholar 

  4. W. Greiner, J. Reinhardt. Field Quantization (Springer, Berlin, 1996)

    MATH  Google Scholar 

  5. S.C. Johnson, T.D. Gutierrez, Visualizing the phonon wave function. Am. J. Phys. 70(3), 227–237 (2002)

    ADS  Google Scholar 

  6. J. Klauder, B. Skagerstam. Coherent States: Applications in Physics and Mathematical Physics (World scientific, Singapore, 1985)

    MATH  Google Scholar 

  7. J.P. Gazeau. Coherent States in Quantum Physics (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  8. T.G. Philbin, Generalized coherent states. Am. J. Phys. 82(8), 742–748 (2014)

    ADS  Google Scholar 

  9. B.R. Holstein, Forced harmonic oscillator: a path integral approach. Am. J. Phys. 53(8), 723–725 (1985)

    ADS  Google Scholar 

  10. V.M. Vyas, Airy wavepackets are Perelomov coherent states. Am. J. Phys. 86(10), 750–754 (2018)

    ADS  Google Scholar 

  11. L. Mandel, E. Wolf. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  12. P.M. Radmore, S.M. Barnett. Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  13. D.F. Walls, Squeezed states of light. Nature. 306(5939), 141–146 (1983)

    ADS  Google Scholar 

  14. J. Janszky, Y.Y. Yushin, Squeezing via frequency jump. Opt. Comm. 59(2), 151–154 (1986)

    ADS  Google Scholar 

  15. X. Ma, W. Rhodes, Squeezing in harmonic oscillators with time-dependent frequencies. Phys. Rev. A. 39(4), 1941–1947 (1989)

    ADS  MathSciNet  Google Scholar 

  16. C.F. Lo, How does a squeezed state of a general driven time-dependent oscillator evolve?. Phys. Scr. 42(4), 389–392 (1990)

    ADS  Google Scholar 

  17. H.A. Gersch, Time evolution of minimum uncertainty states of a harmonic oscillator. Am. J. Phys. 60(11), 1024–1030 (1992)

    ADS  Google Scholar 

  18. H. Yuen, J. Shapiro, Optical communication with two-photon coherent states–Part i: Quantum-state propagation and quantum-noise. IEEE Trans. Inf. Theory. 24(6), 657–668 (1978)

    ADS  MATH  Google Scholar 

  19. H. Yuen, J. Shapiro, Optical communication with two-photon coherent states–Part III: Quantum measurements realizable with photoemissive detectors. IEEE Trans. Inf. Theory. 26(1), 78–92 (1980)

    ADS  MATH  Google Scholar 

  20. A. Abramovici, et al., LIGO: the laser interferometer gravitational-wave observatory. Science. 256(5055), 325–333 (1992)

    ADS  Google Scholar 

  21. A. Aasi, et al., (LIGO Scientific Collaboration), Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Phot. 7(8), 613–619 (2013)

    Google Scholar 

  22. V.B. Braginsky, F.Y. Khalili, Friction and fluctuations produced by the quantum ground state. Phys. Lett. A. 161, 197–201 (1991)

    ADS  Google Scholar 

  23. V.I. Man’ko, The Casimir effect and quantum vacuum generator. J. Sov. Las. Res. 12, 383–385 (1991)

    ADS  Google Scholar 

  24. V.V. Dodonov, A.V. Dodonov, Quantum harmonic oscillator and nonstationary Casimir effect. J. Russ. Laser Res. 26(8), 445–483 (2005)

    Google Scholar 

  25. T. Fujii, S. Matsuo, N. Hatakenaka, S. Kurihara, A. Zeilinger, Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B. 84(17), 174521–1–174521-9 (2011)

    ADS  Google Scholar 

  26. R.J. Cook, D.J. Shankland, A.L. Wells, Quantum theory of particle motion in a rapidly oscillating field. Phys. Rev. A. 31, 564–567 (1985)

    ADS  Google Scholar 

  27. W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    ADS  Google Scholar 

  28. G.S. Agarwal, S.A. Kumar, Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states. Phys. Rev. Lett. 67(26), 3665–3668 (1991)

    ADS  Google Scholar 

  29. L.S. Brown, Quantum motion in a Paul trap. Phys. Rev. Lett. 66, 527–529 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  30. N.A. Lemos, C.P. Natividade, Harmonic oscillator in expanding universes. Il Nuovo Cimento B (1971-1996). 99(2), 211–225 (1987)

    MathSciNet  Google Scholar 

  31. F. Pascoal, C. Farina, Particle creation in a Robertson-Walker universe revisited. Int J. Theor. Phys. 43(11), 2950–2955 (2007)

    MathSciNet  MATH  Google Scholar 

  32. L. Parker, D. Toms. Quantum Field Theory in Curved Space: Quantized Fields and Gravity (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  33. K. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9(4), 381–402 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  34. H.R. Jr Lewis, W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10(8), 1458–1473 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  35. V.S. Popov, A.M. Perelomov, Parametric excitation of a quantum oscillator. Sov. Phys. JETP. 29(4), 738–745 (1969)

    ADS  MathSciNet  Google Scholar 

  36. I.A. Malkin, V.I. Man’ko, Coherent states and excitation of N-dimensional non-stationary forced oscillator. Phys. Lett. A. 32(4), 243–244 (1970)

    ADS  Google Scholar 

  37. I.A. Malkin, V.I. Man’ko, D.A. Trifonov, Coherent states and transition probabilities in a time-dependent electromagnetic field. Phys. Rev. D. 2(8), 1371 (1970)

    ADS  Google Scholar 

  38. I.A. Pedrosa, G.P. Serra, I. Guedes, Wave functions of a time-dependent harmonic oscillator with and without a singular perturbation. Phys. Rev. A. 56(5), 4300 (1997)

    ADS  Google Scholar 

  39. I.A. Pedrosa, Exact wave functions of a harmonic oscillator with time-dependent mass and frequency. Phys. Rev. A. 55(4), 3219 (1997)

    ADS  Google Scholar 

  40. H Moya-Cessa, MF Guasti, Coherent states for the time dependent harmonic oscillator: the step function. Phys. Lett. A. 311(4), 1–5 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  41. M. Andrews, Invariant operators for quadratic Hamiltonians. Am. J. Phys. 67(4), 336–343 (1999)

    ADS  Google Scholar 

  42. A. Del Campo, Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope. Phys. Rev. A. 84(3), 031606 (2011)

    ADS  Google Scholar 

  43. E. Torrontegui, et al., in Shortcuts to adiabaticity. Advances in atomic, molecular, and optical physics, Vol. 62 (Academic Press, 2013), pp. 117–169

  44. D. Guéry-Odelin, et al., Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91(4), 045001 (2019)

    ADS  MathSciNet  Google Scholar 

  45. C.M. Cheng, P.C.W. Fung, The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator. J. Phys. A. 21(22), 4115 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  46. C.C. Gerry, M.F. Plumb, Evolution of SU (1, 1) coherent states in harmonic oscillators with time-dependent masses. J. Phys. A. 23(17), 3997 (1990)

    ADS  MathSciNet  Google Scholar 

  47. C.F. Lo, Squeezing by tuning the oscillator frequency. J. Phys. A. 23(7), 1155 (1990)

    ADS  MathSciNet  Google Scholar 

  48. J. Twamley, Quantum behavior of general time-dependent quadratic systems linearly coupled to a bath. Phys. Rev. A. 48(4), 2627 (1993)

    ADS  Google Scholar 

  49. T. Kiss, J. Janszky, P. Adam, Time evolution of harmonic oscillators with time-dependent parameters: a step-function approximation. Phys. Rev. A. 49(6), 4935 (1994)

    ADS  Google Scholar 

  50. C.F. Lo, Generating displaced and squeezed number states by a general driven time-dependent oscillator. Phys. Rev. A. 43(1), 404 (1991)

    ADS  MathSciNet  Google Scholar 

  51. A.L. de Lima, A. Rosas, I.A. Pedrosa, On the quantum motion of a generalized time-dependent forced harmonic oscillator. Ann. Phys. (N. Y.). 323(9), 2253–2264 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  52. V.V. Dodonov, V.I. Man’ko, Coherent states and the resonance of a quantum damped oscillator. Phys. Rev. A. 20(2), 550 (1979)

    ADS  Google Scholar 

  53. M. Sebawe Abdalla, R.K. Colegrave, Harmonic oscillator with strongly pulsating mass under the action of a driving force. Phys. Rev. A. 32(4), 1958 (1985)

    ADS  MathSciNet  Google Scholar 

  54. J. Janszky, P. Adam, Strong squeezing by repeated frequency jumps. Phys. Rev. A. 46(9), 6091–6092 (1992)

    ADS  Google Scholar 

  55. T. Kiss, P. Adam, J. Janszky, Time-evolution of a harmonic oscillator: jumps between two frequencies. Phys. Lett. A. 192(5-6), 311–315 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  56. C. Aslangul, Sudden expansion or squeezing of a harmonic oscillator. Am. J. Phys. 63(11), 1021–1025 (1995)

    ADS  Google Scholar 

  57. P. Pechukas, J.C. Light, On exponential form of time-displacement operators in quantum mechanics. J. Chem. Phys. 44, 3897–3912 (1966)

    ADS  Google Scholar 

  58. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Integrals of the motion, Green functions and coherent states of dynamical systems. Int. J. Theor. Phys. 14, 37–54 (1975)

    MathSciNet  Google Scholar 

  59. C.P. Natividade, Semiclassical approximation and exact evaluation of the propagator for a harmonic oscillator with time-dependent frequency. Am. J. Phys. 56, 921–922 (1988)

    ADS  Google Scholar 

  60. B.R. Holstein, The adiabatic propagator. Am. J. Phys. 57(8), 714–720 (1989)

    ADS  MathSciNet  Google Scholar 

  61. C. Farina, A.J. Seguí-Santonja, Schwinger’s method for a harmonic oscillator with a time-dependent frequency. Phys. Lett. A. 184(1), 23–28 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  62. V.V. Dodonov, V.I. Man’ko, P.G. Polynkin, Geometrical squeezed states of a charged particle in a time-dependent magnetic field. Phys. Lett. A. 188, 232–238 (1994)

    ADS  Google Scholar 

  63. V.V. Dodonov, M.B. Horovits, Squeezing of relative and center of orbit coordinates of a charged particle by step-wise variations of a uniform magnetic field with an arbitrary linear vector potential. J. Russ. Laser Res. 39, 389–400 (2018)

    Google Scholar 

  64. H.F. Baker, Further applications of matrix notation to integration problems. Proc. London Math. Soc. 1(1), 347–360 (1901)

    MATH  Google Scholar 

  65. H.F. Baker, Alternants and continuous groups. Proc. London Math. Soc. 2(1), 24–47 (1905)

    MathSciNet  MATH  Google Scholar 

  66. J.E. Campbell, On a law of combination of operators bearing on the theory of continuous transformation groups. Proc. London Math. Soc. 1(1), 381–390 (1896)

    MathSciNet  MATH  Google Scholar 

  67. J.E. Campbell, On a law of combination of operators (second paper). Proc. London Math. Soc. 1(1), 14–32 (1897)

    MathSciNet  MATH  Google Scholar 

  68. F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie. Beriche Verandl Sächs. Akad. Wiss. Leipzig, Math. Naturw. Kl. 58, 19–48 (1906)

    MATH  Google Scholar 

  69. D.R. Truax, Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU (1,1) squeeze operators. Phys. Rev. D. 31(8), 1988–1991 (1985)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Reinaldo F. de Melo e Souza, M. V. Cougo-Pinto, and P.A. Maia Neto for enlightening discussions.

Funding

The authors received partial financial support from the Brazilian agencies for scientific and technological research CAPES, CNPq, and FAPERJ. C. F. and C.A.D.Z. are partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under the grants Nos. 310365/2018-0 and 309982/2018-9, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Tibaduiza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Brief Derivation of (24)

Appendix: Brief Derivation of (24)

In this appendix, we shall show that for the Lie algebras defined by the commutation relations:

$$ \left[\hat{K}_{-},\hat{K}_{+}\right] = 2\epsilon\hat{K}_{3} \text{ and } \left[\hat{K}_{3},\hat{K}_{\pm}\right]=\pm\hat{K}_{\pm} , $$

where for 𝜖 = 1 we have the su(1, 1) Lie algebra and for 𝜖 = − 1 we have the su(2) Lie algebra, the following factorization is valid:

$$ e^{\lambda_{+}\hat{K}_{+}+\lambda_{-}\hat{K}_{-}+\lambda_{3}\hat{K}_{3}} = e^{{\Lambda}_{+}\hat{K}_{+}}e^{\ln({\Lambda}_{3})\hat{K}_{3}}e^{{\Lambda}_{-}\hat{K}_{-}} , $$
(53)

where

$$ {\Lambda}_{3} = \left( \cosh(\nu)-\frac{\lambda_{3}}{2\nu}\sinh(\nu)\right)^{-2} ; {\Lambda}_{\pm} = \frac{2\lambda_{\pm}\sinh(\nu)}{2\nu \cosh(\nu)-\lambda_{3}\sinh(\nu)} , $$
(54)

and \(\nu ^{2} = \frac {1}{4}{\lambda _{3}^{2}}-\epsilon \lambda _{+}\lambda _{-}\). We will factorize these two Lie algebras simultaneously. In our demonstration, the following BCH-like relation:

$$ e^{\hat{A}}\hat{B} e^{-\hat{A}} = \hat{B}+\left[\hat{A},\hat{B}\right]+\frac{1}{2!}\left[\hat{A},\left[\hat{A},\hat{B}\right]\right]+\frac{1}{3!}\left[\hat{A},\left[\hat{A},\left[\hat{A},\hat{B}\right]\right]\right]+... , $$
(55)

will be used repeated times. Firstly, let us re-define the left side of (53) as the special case 𝜃 = 1 of the operator:

$$ \hat{F}_{1}(\theta)=e^{\theta(\lambda_{+}\hat{K}_{+}+\lambda_{-}\hat{K}_{-}+\lambda_{3}\hat{K}_{3})} . $$
(56)

The basic idea is to find an equivalent expression in the form:

$$ \hat{F}_{1}(\theta)=e^{{\Lambda}_{+}(\theta)\hat{K}_{+}}e^{{\Sigma}_{3}(\theta)\hat{K}_{3}}e^{{\Lambda}_{-}(\theta)\hat{K}_{-}} . $$
(57)

This means that we need to find write parameters Λ+, Λ and Σ3 in terms of the small lambdas, so that the last two equations are equal. With this goal, we derive both expressions with respect to 𝜃 and impose the derivatives to be equal. Doing that and using the previous BCH formula, we obtain the following coupled differential equations:

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{+}^{\prime}-{\Sigma}_{3}^{\prime}{\Lambda}_{+}+{\Lambda}_{-}^{\prime}e^{-{\Sigma}_{3}}\epsilon({\Lambda}_{+})^{2}&=&\lambda_{+} , \end{array} $$
(58)
$$ \begin{array}{@{}rcl@{}} {\Sigma}_{3}^{\prime}-2\epsilon{\Lambda}_{-}^{\prime}e^{-{\Sigma}_{3}}{\Lambda}_{+}&=&{\Sigma}_{3} , \end{array} $$
(59)
$$ \begin{array}{@{}rcl@{}} {\Lambda}_{-}^{\prime}e^{-{\Sigma}_{3}}&=&\lambda_{-} , \end{array} $$
(60)

where the prime indicates derivative with respect to 𝜃. To solve the above equations, we start by decoupling them. Firstly, replacing (60) into (58) and (59) leads to:

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{+}^{\prime}-{\Sigma}_{3}^{\prime}{\Lambda}_{+}+\epsilon\lambda_{-}({\Lambda}_{+})^{2}&=&\lambda_{+} , \end{array} $$
(61)
$$ \begin{array}{@{}rcl@{}} {\Sigma}_{3}^{\prime}-2\epsilon\lambda_{-}{\Lambda}_{+}&=&\lambda_{3} . \end{array} $$
(62)

Then, we obtain a differential equation for the function Λ+ by isolating \({\Sigma }_{3}^{\prime }\) from (62) and replacing it into (61):

$$ \frac{d}{d\theta}{\Lambda}_{+}=\lambda_{+}+\lambda_{3}{\Lambda}_{+}+\in\lambda\_({\Lambda}_{+})^{2}. $$
(63)

Equation (63) is a first-order, quadratic, and non-homogeneous ordinary differential equation known as the Riccati equation. It has a unique solution and can be transformed into an ordinary, homogeneous, and second-order differential equation with the aid of the transformation:

$$ {\Lambda}_{+}=-\frac{1}{\epsilon\lambda_{-}}\frac{1}{u}\frac{du}{d\theta}, $$
(64)

leading to

$$ \frac{d^{2}u}{d\theta^{2}}+{\Gamma}\frac{du}{d\theta}+\omega^{2}_{0}u=0, $$
(65)

where we defined \({\omega _{0}^{2}} = \epsilon \lambda _{-}\lambda _{+} \text { and } {\Gamma } = -\lambda _{3} \) in order to identify it as the classical equation of a damped harmonic oscillator with natural frequency ω0 and damped coefficient Γ. Note that by using (62) and (64), we can calculate:

$$ {\Sigma}_{3}(\theta) = \lambda_{3}\theta-2\epsilon\lambda_{-}\!(\frac{1}{\epsilon\lambda_{-}}\!)\int{\!\frac{du}{u}}+C_{1} = \lambda_{3}\theta-2\ln{u(\theta)}+C_{1}, $$
(66)

and replacing (66) into (60) we obtain:

$$ {\Lambda}_{-}(\theta) = \lambda_{-}\int{e^{{\Sigma}_{3}(\theta)}d\theta}+C_{2} , $$
(67)

where constants C1 and C2 are determined from the initial conditions, namely, Σ3(𝜃 = 0) = 0 and Λ(𝜃 = 0) = 0. Therefore, once we find u(𝜃), we can determine the functions Λ+, Λ, and Σ3. Coming back to (65), its general solution is given by:

$$ u(\theta)=e^{-\frac{\Gamma}{2} \theta}\left( Ae^{\nu\theta}+Be^{-\nu\theta}\right) , $$
(68)

where

$$ \nu=\sqrt{\frac{1}{4}{\Gamma}^{2}-{\omega_{0}^{2}}}=\sqrt{\frac{1}{4}{\lambda_{3}^{2}}-\epsilon\lambda_{-}\lambda_{+}}, $$
(69)

and constants A and B are determined from the initial conditions. Using the above results in (64), we find:

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{+}(\theta) &= -\frac{1}{\epsilon\lambda_{-}}\frac{1}{u}\left[(\nu-\frac{\Gamma}{2})u-2\nu B e^{-(\frac{\Gamma}{2}+\nu)\theta}\right]\\&=\frac{(\frac{\Gamma}{2}-\nu)}{\epsilon\lambda_{-}} + \frac{2\nu B e^{-\nu\theta}}{\epsilon\lambda_{-}\left[Ae^{\nu\theta}+Be^{-\nu\theta}\right]}, \end{array} $$
(70)

and from the initial condition Λ+(𝜃 = 0) = 0 we get \(A=\frac {(\nu +{\Gamma }/2)}{(\nu -{\Gamma }/2)}B\). Therefore, (70) becomes:

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{+}(\theta) &=& \frac{1}{\epsilon\lambda_{-}}\left[\!\left( \frac{\Gamma}{2}-\nu\right)+\frac{2\nu\left( \nu-\frac{\Gamma}{2}\right) e^{-\nu\theta}}{\left[\left( \nu+\frac{\Gamma}{2}\right)e^{\nu\theta}+\left( \nu-\frac{\Gamma}{2}\right)e^{-\nu\theta}\right]}\right]\\ &=& \frac{1}{\epsilon\lambda_{-}}\left[\frac{2\left( \frac{{\Gamma}^{2}}{4}-\nu^{2}\right)\sinh(\nu\theta)}{2\nu \cosh(\nu\theta)+{\Gamma} \sinh(\nu\theta)}\right]. \end{array} $$

Now, using definition (69) and expressions \({\omega _{0}^{2}} = \epsilon \lambda _{-}\lambda _{+}\) and Γ = −λ3, we obtain:

$$ {\Lambda}_{+}(\theta)=\frac{2\lambda_{+}\sinh(\nu\theta)}{2\nu \cosh(\nu\theta)-\lambda_{3} \sinh(\nu\theta)}, $$
(71)

which leads to the desired expression written in (54) if we take 𝜃 = 1.

In order to obtain Σ3, we first replace the solution for u(𝜃), (68), into (66) to get:

$$ \begin{array}{@{}rcl@{}} {\Sigma}_{3}(\theta) &=& \lambda_{3}\theta-2\ln{\left\{e^{-\frac{\Gamma}{2} \theta}\left( \frac{(\nu+{\Gamma}/2)}{(\nu-{\Gamma}/2)}e^{\nu\theta}+e^{-\nu\theta}\right)B\right\}}+C_{1} \\ &=&(\lambda_{3}+{\Gamma})\theta-2\ln{\left( \frac{(\nu+{\Gamma}/2)}{(\nu-{\Gamma}/2)}e^{\nu\theta}+e^{-\nu\theta}\right)} + D , \end{array} $$
(72)

where all constants have been absorbed in D. Using the initial condition Σ3(0) = 0 and that Γ = −λ3 it can be shown that \( D = 2\ln {(\frac {2\nu }{\nu -{\Gamma }/2})}\). Replacing this result into (72), we get:

$$ {\Sigma}_{3}(\theta) = \ln{\left\{\left( \cosh(\nu\theta)-\frac{\lambda_{3}}{2\nu} \sinh(\nu\theta)\right)^{-2}\right\}}, $$
(73)

which after taking 𝜃 = 1 leads to the desired result of equation in (54) since in (53) Λ3 is defined as the argument of the logarithm.

Finally, in order to find Λ(𝜃), we replace (73) into (67) obtaining:

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{-}(\theta) &=& \lambda_{-}\int{\frac{\text{sech}^{2}(\nu\theta)}{\left( 1-\frac{\lambda_{3}}{2\nu} \tanh(\nu\theta)\right)^{2}}d\theta}+C_{2}\\ &=& \frac{2\lambda_{-}}{\lambda_{3}}\left( \frac{2\nu \cosh(\nu\theta)}{2\nu \cosh(\nu\theta)-\lambda_{3} \sinh(\nu\theta)}\right)+C_{2}. \end{array} $$
(74)

Using the initial condition for Λ, it can be shown that \(C_{2} = -\frac {2\lambda _{-}}{\lambda _{3}}\). Substituting this result in (74), we finally obtain:

$$ {\Lambda}_{-}(\theta) = \frac{2\lambda_{-}\sinh(\nu\theta)}{2\nu \cosh(\nu\theta)-\lambda_{3} \sinh(\nu\theta)}, $$
(75)

which leads to the desired result after taking 𝜃 = 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibaduiza, D.M., Pires, L., Szilard, D. et al. A Time-Dependent Harmonic Oscillator with Two Frequency Jumps: an Exact Algebraic Solution. Braz J Phys 50, 634–646 (2020). https://doi.org/10.1007/s13538-020-00770-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00770-x

Keywords

Navigation