Skip to main content
Log in

Anisotropic Axisymmetric MHD Equilibria in Spheroidal Coordinates

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

When subjected to a strong magnetic field, plasmas can exhibit anisotropy in the directions parallel and perpendicular to the field. The magnetohydrodynamics (MHD) equilibrium equation under the hypothesis of Chew, Goldberger, and Low of an anisotropic pressure tensor is solved analytically, using a previously known solution of the isotropic case in oblate spheroidal coordinates. The effects of the anisotropy on the magnetic fields and on the current density are investigated, and the radial profiles of the pressures along and across the magnetic field are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.R. Nicholson. Introduction to Plasma Theory (Wiley, New York, 1983)

    Google Scholar 

  2. H.J. Lee. Fundamentals of Plasma Physics (World Scientific, Singapore, 2019)

    Book  Google Scholar 

  3. G.F. Chew, M.L. Goldberger, F.E. Low, . Proc. R. Soc. London. 236, 112 (1956)

    ADS  Google Scholar 

  4. R.M. Kulsrud, in MHD Description of Plasma in Handbook of Plasma Physics, vol. I, ch. 1.4, ed. by M.N. Rosenbluth, R.Z. Sagdeev (Publishing Company, North-Holland, 1983)

  5. V.D. Pustovitiv, . Plasma Phys. Contr. Fusion. 52, 065001 (2010)

    Article  ADS  Google Scholar 

  6. A. Fasoli, et al., . Nucl. Fusion. 47, S264 (2007)

    Article  Google Scholar 

  7. N.V. Erkaev, H.K. Biernat, D.F. Vogl, C.J. Farrugia, . Adv. Space Res. 28, 873 (2001)

    Article  ADS  Google Scholar 

  8. J.P. Freidberg, . Rev. Mod. Phys. 54, 801 (1982)

    Article  ADS  Google Scholar 

  9. H. Grad, H. Rubin, in Hydromagnetic equilibria and force-free fields. Proceedings of the 2nd UN Conf. on the Peaceful Uses of Atomic Energy, Vol. 31 (IAEA, Geneva, 1958), p. 190

  10. R. Lüst, A. Schlüter, . Z. Naturforschung. 12a, 85 (1957)

    Google Scholar 

  11. V.D. Shafranov, in Plasma equilibrium in a magnetic field. Reviews of Plasma Physics, ed. by M.A. Leontovich, Vol. 2 (Consultants Bureau, New York, 1966)

  12. C. Mercier, M. Cotsaftis, . Nucl. Fusion. 1, 121 (1961)

    Article  Google Scholar 

  13. H. Grad, . Phys. Fluids. 10, 137 (1967)

    Article  ADS  Google Scholar 

  14. A. Sestero, A. Taroni, . Nucl. Fusion. 16, 164 (1976)

    Article  ADS  Google Scholar 

  15. W.A. Cooper, et al., . Nucl. Fusion. 20, 985 (1980)

    Article  ADS  Google Scholar 

  16. W.A. Cooper, . Phys. Fluids. 26, 1830 (1983)

    Article  ADS  Google Scholar 

  17. P.J. Fielding, F.A. Haas, . Nucl. Fusion. 19, 855 (1979)

    Article  ADS  Google Scholar 

  18. E.R. Salberta, et al., . Phys. Fluids. 30, 2796 (1987)

    Article  ADS  Google Scholar 

  19. H.M. Rizk, . J. Plasma Phys. 38, 209 (1987)

    Article  ADS  Google Scholar 

  20. R.A. Clemente, . Nucl. Fusion. 33, 963 (1993)

    Article  ADS  Google Scholar 

  21. E.K. Maschke, . Plasma Phys. 15, 535 (1973)

    Article  ADS  Google Scholar 

  22. F. Hernegger. Controlled Fusion and Plasma Physics (Proc. 5th Eur. Conf. Grenoble, 1972), Vol. 1 (Centre d’Études Nucléaires, Grenoble, 1972), p. 26

  23. L.C. Souza, R.L. Viana, . Phys. Plasmas. 26, 042502 (2019)

    Article  ADS  Google Scholar 

  24. T.R. Jarboe, . Plasma Phys. Contr. Fusion. 36, 945 (1984)

    Article  ADS  Google Scholar 

  25. M.N. Rosenbluth, M.N. Bussac, . Nucl. Fusion. 19, 489 (1979)

    Article  ADS  Google Scholar 

  26. S. Kaneko, K. Chiyoda, I. Hirota, . J. Phys. Soc. Japan. 52, 2016 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Kaneko, A. Kamitani, A. Takimoto, . J. Phys. Soc. Japan. 54, 3347 (1985)

    Article  ADS  Google Scholar 

  28. H. Gota, et al., . Nucl. Fusion. 57, 116021 (2017)

    Article  ADS  Google Scholar 

  29. H. Gota, et al., . Nucl. Fusion. 59, 112009 (2019)

    Article  ADS  Google Scholar 

  30. J.A. Bittencourt. Fundamentals of Plasma Physics, 3rd edn. (Springer, New York, 1994)

    MATH  Google Scholar 

  31. R.A. Clemente, . Plasma Phys. Contr. Fusion. 36, 707 (1994)

    Article  ADS  Google Scholar 

  32. R.A. Clemente, R.L. Viana, . Plasma Phys. Contr. Fusion. 41, 567 (1999)

    Article  ADS  Google Scholar 

  33. R.A. Clemente, R.L. Viana, . Braz. J. Phys. 29, 457 (1999)

    Article  ADS  Google Scholar 

  34. J.W. Edenstrasser, . J. Plasma Phys. 24, 299 (1980)

    Article  ADS  Google Scholar 

  35. P.M. Morse, H. Feshbach. Methods of Theoretical Physics, vol. II, ch. 10 (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  36. R.L. Viana, . Int. J. Theor. Phys. 37, 2657 (1998)

    Article  Google Scholar 

  37. H. Grad. Magneto-Fluid and Plasma Dynamics Symposia in Applied Mathematics, Vol. 18 (American Mathematical Society, Providence, 1967), p. 162

  38. S.P. Auerbach, W.C. Condit, . Nucl. Fusion. 21, 927 (1981)

    Article  Google Scholar 

Download references

Funding

This work has been financially supported by grants from CNPq (Brazilian Government Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Viana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, L.C., Viana, R.L. Anisotropic Axisymmetric MHD Equilibria in Spheroidal Coordinates. Braz J Phys 50, 136–142 (2020). https://doi.org/10.1007/s13538-019-00727-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00727-9

Keywords

Navigation