Skip to main content
Log in

Revisiting the Entangled Chains of Polymer in the Carbyne Model

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The Monte Carlo carbyne model is modified to investigate the glass transition of the simplified polymer chains. The stochastic bombardment between monomers is monitored by Metropolis algorithm with the help of the consideration of hard potential while the mobility of monomers is governed by its mass, scattering rate, and temperature. Our model is capable to show that the glass transition temperature reduces with decreasing film thickness and the formation of critical voids in the thinner polymer contributing to the glass transition that is much easier than the bulk polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.L. Cui, G.F. Ji, X.R. Chen, Q.M. Zhang, D.Q. Wei, F. Zhao, Phase transitions and mechanical properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in different crystal phases by molecular dynamics simulation. J. Chem. Eng 55(9), 3121–3129 (2010)

    ADS  Google Scholar 

  2. J. Han, R.H. Gee, R.H. Boyd, Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27(26), 7781–7784 (1994)

    Article  ADS  Google Scholar 

  3. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65(23), 235430 (2002)

    Article  ADS  Google Scholar 

  4. H. Morita, K. Tanaka, T. Kajiyama, T. Nishi, M. Doi, Study of the glass transition temperature of polymer surface by coarse-grained molecular dynamics simulation. Macromolecules 39(18), 6233–6237 (2006)

    Article  ADS  Google Scholar 

  5. S. Peter, H. Meyer, J. Baschnagel, MD simulation of concentrated polymer solutions: Structural relaxations near the glass transition. Eur. Phys. J. E. Soft. Matter. 28(2), 147–158 (2009)

    Article  Google Scholar 

  6. C. Jiang, J.W. Zhang, S.F. Lin, D.Z. Jiang, Molecular dynamic simulation study on glass transition temperature of DGEBA-THPA/SWCNTs composites. MSCE 2(1), 26–30 (2014)

    Article  Google Scholar 

  7. F.A. Detcheverry, H. Kang, K.C. Daoulas, M. Müller, P.F. Nealey, J.J. de Pablo, Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites. Macromolecules 41(13), 4989–5001 (2008)

    Article  ADS  Google Scholar 

  8. D.T. Seaton, S.J. Mitchell, D.P. Landau, Monte Carlo simulations of a semi-flexible polymer chain: a first glance. Braz. J. Phys. 36(3A), 623–626 (2006)

    Article  ADS  Google Scholar 

  9. C.H. Wong, E.A. Buntov, V.N. Rychkov, M.B. Guseva, A.F. Zatsepin, Simulation of chemical bond distributions and phase transformation in carbon chains. Carbon 114, 106–110 (2017)

    Article  Google Scholar 

  10. J.W.P. Schmelzer, I.S. Gutzow, O.V. Mazurin, A.I. Priven, S.V. Todorova, B.P. Petroff, Glasses and the Glass Transition (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)

    Book  Google Scholar 

  11. L.H. Sperling, Introduction to Physical Polymer Science (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  12. G. Vignaud, M.S. Chebil, J.K. Bal, N. Delorme, T. Beuvier, Y. Grohens, A. Gibaud, Densification and depression in glass transition temperature in polystyrene thin films. Langmuir 30(39), 11599–11608 (2014)

    Article  Google Scholar 

  13. J.H. Kim, J. Jang, W.C. Zin, Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17(9), 2703–2710 (2001)

    Article  Google Scholar 

  14. A.N. Raegen, M.V. Massa, J.A. Forrest, K. Dalnoki-Veress, Effect of atmosphere on reductions in the glass transition of thin polystyrene films. The European Physical Journal E 10394(3) (2008)

  15. R. Inoue, T. Kanaya, T. Yamada, K. Shibata, K. Fukao, Experimental investigation of the glass transition of polystyrene thin films in a broad frequency range. Phys. Rev. E 97(012501) (2018)

  16. M. Liu, V.I. Artyukhov, H. Lee, F. Xu, B.I. Yakobson, Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7(11), 10075–10082 (2013)

    Article  Google Scholar 

  17. I.E. Castelli, P. Salvestrini, N. Manini, Mechanical properties of carbynes investigated by ab initio total-energy calculations. Phys. Rev. B: Condens. Matter 85, 214110 (2012)

    Article  ADS  Google Scholar 

  18. F. Banhart, J. Beilstein, Chains of carbon atoms: a vision or a new nanomaterial? Nanotechnol 6, 559–569 (2015)

    Google Scholar 

  19. Y. Yamaguchia, T. Wakabayash, Coagulation of linear carbon molecules into nanoparticles: a molecular dynamics study. Chem. Phys. Lett. 388(4–6), 436–440 (2004)

    Article  ADS  Google Scholar 

  20. C.S. Casariand, A. Milani, Carbyne: from the elusive allotrope to stable carbon atom wires. MRS Commun. 8(2), 207–219 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.H., Lei, X., Buntov, E.A. et al. Revisiting the Entangled Chains of Polymer in the Carbyne Model. Braz J Phys 48, 571–575 (2018). https://doi.org/10.1007/s13538-018-0601-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0601-9

Keywords

Navigation