Skip to main content
Log in

Effect of Band Nonparabolicity on the Inter Band Tunneling in Semiconductors

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A simple yet generalized theory is developed to study inter band tunneling property of narrow band gap III–V compound semiconductors. The band structures of these low band gap semiconductors with sufficiently separated split-off valance band are usually described by the three energy band model of Kane, so this has been adopted here for the analysis of interband tunneling property in the case of InAs, InSb, and In1-xGaxAsyP1-y lattice matched to InP as representative direct band gap semiconductors having varied split-off valence band compared to their bulk state band gap energy. It has been found that the magnitude of tunneling rate from heavy hole decreases with increasing band nonparabolicity and the impact is more significant at high electric field in the three-band model of Kane than those with simple parabolic energy band approximations reflecting the direct influence of energy band parameters on inter band tunneling transitions. With proper consideration of band nonparabolicity, the results of the analysis of tunneling rate of these narrow gap materials show significant deviations from the results when simple parabolic band approximation is considered. The exact physical basis of the sources of deviation in the nonparabolic case from the corresponding parabolic band approximations is discussed in association to band coupling effect, transverse energy dependence, and the interplay between them. Moreover, under certain limiting conditions, our results reduce to the well-known results of parabolic band approximation and thus providing an indirect test to the accuracy of our generalized formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Zener, A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. London, Ser. A 145, 523 (1934). https://doi.org/10.1098/rspa.1934.0116

    Article  MATH  ADS  Google Scholar 

  2. L. Esaki, New Phenomenon in Narrow Germanium p−n Junctions. Phys. Rev. 109, 603 (1958). https://doi.org/10.1103/PhysRev.109.603

    Article  ADS  Google Scholar 

  3. W. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, Zener tunneling in semiconductors under nonuniform electric fields. J. Appl. Phys. 107, 054520 (2010). https://doi.org/10.1063/1.3311550

    Article  ADS  Google Scholar 

  4. W.M. Reddick, G.A.J. Amaratunga, Silicon surface tunnel transistor. Appl. Phys. Lett. 67, 494 (1995). https://doi.org/10.1063/1.114547

    Article  ADS  Google Scholar 

  5. J. Appenzeller, Y.M. Lin, J. Knoch, Z. Chen, P. Avouris, Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design. IEEE Trans. Electron. Devices 52, 2568 (2005). https://doi.org/10.1109/TED.2005.859654

    Article  ADS  Google Scholar 

  6. T. Lim, Y. Kim, Effect of band-to-band tunnelling leakage on 28 nm MOSFET design. Electron. Lett. 44, 157 (2008). https://doi.org/10.1049/el:20082596

    Article  Google Scholar 

  7. A. Pan, C.O. Chui, Modeling direct interband tunneling. I. Bulk semiconductors. J. Appl. Phys. 116, 054508 (2014). https://doi.org/10.1063/1.4891527

    Article  ADS  Google Scholar 

  8. H. Carrillo-Nunez, A. Ziegler, M. Luisier, A. Schenk, Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices. J. Appl. Phys. 117, 234501 (2015). https://doi.org/10.1063/1.4922427

    Article  ADS  Google Scholar 

  9. D. Jena, T. Fang, Q. Zhang, H. Xing, Zener tunneling in semiconducting nanotube and graphene nanoribbon p-n junctions. Appl. Phys. Lett. 93, 112106 (2008). https://doi.org/10.1063/1.2983744

    Article  ADS  Google Scholar 

  10. C.H. Shih, N.D. Chien, Physical properties and analytical models of band-to-band tunneling in low-bandgap emiconductors. J. Appl. Phys. 115, 044501 (2014). https://doi.org/10.1063/1.4862335

    Article  ADS  Google Scholar 

  11. W.Y. Fung, L. Chen, W. Lu, Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions. Appl. Phys. Lett. 99, 092108 (2011). https://doi.org/10.1063/1.3633347

    Article  ADS  Google Scholar 

  12. Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron. Device Lett. 27, 297 (2006). https://doi.org/10.1109/LED.2006.871855

    Article  ADS  Google Scholar 

  13. L. Keldysh, Influence of the Lattice Vibrations of a Crystal on the Production of Electron-Hole Pairs in a Strong Electrical Field. Sov. Phys. JETP 7, 665 (1959)

    Google Scholar 

  14. E.O. Kane, Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181 (1960). https://doi.org/10.1016/0022-3697(60)90035-4

    Article  ADS  Google Scholar 

  15. E.O. Kane, Theory of Tunneling. J. Appl. Phys. 32, 83 (1961). https://doi.org/10.1063/1.1735965

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. P.N. Argyres, Theory of Tunneling and its Dependence on a Longitudinal Magnetic Field. Phys. Rev. 126, 1386 (1962). https://doi.org/10.1103/PhysRev.126.1386

    Article  MATH  ADS  Google Scholar 

  17. A. Schenk, Rigorous theory and simplified model of the band-to-band tunneling in silicon Author links open overlay panel. Solid State Electron 36, 19 (1993). https://doi.org/10.1016/0038-1101(93)90065-X

    Article  ADS  Google Scholar 

  18. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011). https://doi.org/10.1038/nature10679

    Article  ADS  Google Scholar 

  19. E.O. Kane, Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249 (1957). https://doi.org/10.1016/0022-3697(57)90013-6

    Article  ADS  Google Scholar 

  20. A. Dey, B. Maiti, D. Chanda (Sarkar), A simple analysis of interband absorption in quantum well structure of III-V ternary and quaternary semiconductors. J. Appl. Phys. 111, 103104 (2012). https://doi.org/10.1063/1.4718414

    Article  ADS  Google Scholar 

  21. A. Dey, B. Maiti, D. Chanda (Sarkar), Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors. J. Appl. Phys. 115, 143107 (2014). https://doi.org/10.1063/1.4870939

    Article  ADS  Google Scholar 

  22. W. Franz, W. Franz, International Conference on Semiconductors, Garmisch-Partenkirchen, (1956) (Interscience Publishers, Inc., New York, 1958), p. 317

    Google Scholar 

  23. J. Chu, A. Sher, Physics and properties of narrow gap semiconductors (Springer Science, New York, 2008). https://doi.org/10.1007/978-0-387-74801-6

    Book  Google Scholar 

  24. R. Dornhaus, G. Nimtz, The properties and applications of the Hg1−xCdxTe alloy system. Springer Tracts Mod. Phys. 78, 1 (1978). https://doi.org/10.1007/BFb0119322

    Article  ADS  Google Scholar 

  25. G.L. Hansen, J.L. Schmidt, T.N. Casselman, Calculation of intrinsic carrier concentration in Hg1−xCdxTe. J. Appl. Phys. 53, 7099 (1982). https://doi.org/10.1063/1.332153

    Article  ADS  Google Scholar 

  26. R.J. Nicholas, S.J. Sessions, Cyclotron resonance and the magnetophonon effect in GaxIn1−xAsyP1−y. Appl. Phys. Lett. 37, 178 (1980). https://doi.org/10.1063/1.91815

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Dey.

Appendices

Derivation of Interband Transition Matrix Element

The spin vector is represented by

$$ \overrightarrow{S}=\frac{\mathrm{\hslash}}{2}\overrightarrow{\sigma} $$
(A.1)

where the Pauli spin matrices are

$$ {\sigma}_x=\left(\begin{array}{cc}0& 1\\ {}1& 0\end{array}\right);{\sigma}_y=\left(\begin{array}{cc}0& -i\\ {}i& 0\end{array}\right);{\sigma}_z=\left(\begin{array}{cc}1& 0\\ {}0& -1\end{array}\right) $$
(A.2)

The interband transition matrix element (IME) can be expressed as

$$ {\displaystyle \begin{array}{l}{Z}_{cv}(K)=i\left\langle {u}_1\left(\overrightarrow{k},\overrightarrow{r}\right)\left|\left(\partial /{k}_z\right){u}_2\left(\overrightarrow{k},\overrightarrow{r}\right)\right.\right\rangle \\ {}=i\left\{\left[-1\left\langle \left.(S)\right|(S)\right\rangle \left\langle \left.\downarrow {}^{\prime}\right|\uparrow {}^{\prime}\right\rangle \right]{a}_{k+}\frac{\partial {a}_{k-}}{\partial {k}_z}\right.\end{array}} $$
(A.3)
$$ \left.+\left[\left\langle \left(\frac{X^{\prime }-{iY}^{\prime }}{\sqrt{2}}\right)\left|\left(-\frac{X^{\prime }-{iY}^{\prime }}{\sqrt{2}}\right)\right.\right\rangle \left\langle \uparrow {}^{\prime}\left|\downarrow {}^{\prime}\right.\right\rangle \right]{b}_{k+}\frac{\partial {b}_{k-}}{\partial {k}_z}+\left[\left\langle \left.{Z}^{\prime}\right|{Z}^{\prime}\right\rangle \left\langle \uparrow {}^{\prime}\left|\downarrow {}^{\prime}\right.\right\rangle \right]{c}_{k+}\frac{\partial {c}_{k-}}{\partial {k}_z}\right\} $$
(A.4)

Expanding Eq. (22), |X〉, |Y〉, and |Z〉 can be expressed in terms of |X〉, |Y〉, and |Z〉 as|X〉 = cos θ cos ϕ|X〉 + cos θ sin ϕ|Y〉 − sin θ|Z〉, |Y〉 =  − sin ϕ|X〉 + cos ϕ|Y〉and

$$ \left|{Z}^{\prime}\right\rangle =\sin \theta \cos \phi \left|X\right\rangle +\sin \theta \sin \phi \left|Y\right\rangle +\cos \theta \left|Z\right\rangle $$
(A.5)

Thus, using Eqs. (20), (21) and (A.5), it can be inferred that

$$ \left\langle {X}^{\prime }|{X}^{\prime}\right\rangle =\left\langle {Y}^{\prime }|{Y}^{\prime}\right\rangle =\left\langle {Z}^{\prime }|{Z}^{\prime}\right\rangle =1 $$
(A.6)

and 〈X| Y〉 = 〈Y| Z〉 = 〈Z| X〉 = 0,〈S| X〉 = 〈X| S〉 = 0

$$ \left\langle S|{Y}^{\prime}\right\rangle =\left\langle {Y}^{\prime }|S\right\rangle =0,\kern1em \left\langle S|{Z}^{\prime}\right\rangle =\left\langle {Z}^{\prime }|S\right\rangle =0 $$
(A.7)

Now, using Eqs. (A.3), (A.6), and (A.7), we obtained

$$ {Z}_{cv}\left(\mathrm{k}\right)=i\left\{\left({a}_{k+}\frac{\partial {a}_{k-}}{\partial {k}_z}\right)\right.\left.-\left({c}_{k+}\frac{\partial {c}_{k-}}{\partial {k}_z}\right)\right\}\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle $$
(A.8)

which is rewritten as

$$ {Z}_{cv}\left(\mathrm{k}\right)=i\left\{X(k)\right\}\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle $$
(A.9)

where

$$ X(k)=\left\{\left({a}_{k+}\frac{\partial {a}_{k-}}{\partial {k}_z}\right)\right.\left.-\left({c}_{k+}\frac{\partial {c}_{k-}}{\partial {k}_z}\right)\right\} $$
(A.10)

This equation suggests that the carriers in the z-orbitals of the VB are only involved in interband tunneling process. By suitably tailoring the energy band constants by external effect (like strain etc.), the interband tunneling rate may be modified. This is a new observation made in this paper. Besides, the heavy-hole band being made up of x and y-type atomic orbitals cannot take part in the interband tunneling transition process as is noted in previous works [16].

Using Eqs. (11)–(16), and after tedious algebraic manipulation we obtain,

$$ {\displaystyle \begin{array}{l}X(k)=\frac{1}{4{\left(\zeta \left(\overrightarrow{k}\right)+{\delta}^{\prime}\right)}^2}\frac{d\zeta \left(\overrightarrow{k}\right)}{{d k}_z}\left\{{\beta}^2{\left(\frac{\left(\zeta \left(\overrightarrow{k}\right)+{E}_g\right)}{\left(\zeta \left(\overrightarrow{k}\right)-{E}_g+4{\delta}^{\prime }/{\beta}^2\right)}\right)}^{1/2}\left({E}_g-{\delta}^{\prime }+4{\delta}^{\prime }/{\beta}^2\right)\right.\\ {}\left.+{t}^2\left({\left(\frac{\left(\zeta \left(\overrightarrow{k}\right)-{E}_g\right)}{\left(\zeta \left(\overrightarrow{k}\right)+{E}_g\right)}\right)}^{1/2}\left({E}_g-{\delta}^{\prime}\right)\right)\right\}\end{array}} $$
(A.11)

From Eqs. (12) and (15)

\( {\beta}^2=\left(\frac{\chi +\Delta {E}_g}{\chi}\right) \),\( {E}_g-4{\delta}^{\prime }/{\beta}^2={E}_g\left(\frac{\chi -3\Delta {E}_g}{\chi +\Delta {E}_g}\right) \), \( {t}^2=\left(\frac{\chi -\Delta {E}_g-\left(4{\Delta}^2/3\right)}{\chi}\right) \)

$$ {E}_g-{\delta}^{\prime }={E}_g\left(1-\frac{\Delta {E}_g}{\chi}\right) $$
(A.12)

Using Eqs. (A.11) and (A.12), we may approximate X(k) as

$$ X(k)=\frac{1}{4{\left(\zeta \left(\overrightarrow{k}\right)+{\delta}^{\prime}\right)}^2}\frac{d\zeta \left(\overrightarrow{k}\right)}{{d k}_z}{E}_g\left(1-{\delta}^{\prime }/{E}_g\right)\left(2-{\delta}^{\prime }/{E}_g-{\left({\delta}^{\prime }/{E}_g\right)}^2-4{\Delta}^2/3\chi \right)\left(\frac{\zeta \left(\overrightarrow{k}\right)}{{\left(\zeta {\left(\overrightarrow{k}\right)}^2-{E_g}^2\right)}^{1/2}}\right) $$
(A.13)

From Eqs. (17) and (A.13), one can write

$$ X(k)=\frac{1}{4}\left(\frac{\mathrm{\hslash}{E_g}^{3/2}}{{\left(\zeta \left(\overrightarrow{k}\right)+{\delta}^{\prime}\right)}^2{\left({m}_r\right)}^{1/2}}\right)\left(1-{\delta}^{\prime }/{E}_g\right)\left(2-{\delta}^{\prime }/{E}_g+2{\left({\delta}^{\prime }/{E}_g\right)}^2-4{\Delta}^2/3\chi \right) $$
(A.13a)

On transforming the spin vectors, one may express

|↑〉 = e/2 cos(θ/2)|↑〉 + e/2 sin(θ/2)|↓〉 (and)

$$ \left|{\downarrow}^{\prime}\right\rangle =-{e}^{- i\phi /2}\sin \left(\theta /2\right)\left|\uparrow \right\rangle +{e}^{i\phi /2}\cos \left(\theta /2\right)\left|\downarrow \right\rangle $$

Then,

$$ \left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle ={\left(-{e}^{- i\phi /2}\sin \left(\theta /2\right)\left|\uparrow \right\rangle +{e}^{i\phi /2}\cos \left(\theta /2\right)\left|\downarrow \right\rangle \right)}^{\ast } $$
$$ \times \left({e}^{- i\phi /2}\cos \left(\theta /2\right)\left|\uparrow \right\rangle +{e}^{i\phi /2}\sin \left(\theta /2\right)\left|\downarrow \right\rangle \right) $$
$$ {\displaystyle \begin{array}{l}=\left(-{e}^{i\phi /2}\sin \left(\theta /2\right)\left\langle \uparrow \right|+{e}^{- i\phi /2}\cos \left(\theta /2\right)\left\langle \downarrow \right|\right)\\ {}\times \left({e}^{- i\phi /2}\cos \left(\theta /2\right)\left|\uparrow \right\rangle +{e}^{i\phi /2}\sin \left(\theta /2\right)\left|\downarrow \right\rangle \right)\end{array}} $$

or

$$ \left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle =-\sin \left(\theta /2\right)\cos \left(\theta /2\right)\left\langle \uparrow |\uparrow \right\rangle +{e}^{- i\phi /2}{\cos}^2\left(\theta /2\right)\left\langle \downarrow |\uparrow \right\rangle $$
$$ -{e}^{- i\phi /2}{\sin}^2\left(\theta /2\right)\left\langle \uparrow |\downarrow \right\rangle +\sin \left(\theta /2\right)\cos \left(\theta /2\right)\left\langle \downarrow |\downarrow \right\rangle $$

The x-component of the above expression is written as,

$$ {\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_x=-\sin \left(\theta /2\right)\cos \left(\theta /2\right){\left\langle \uparrow |\uparrow \right\rangle}_x+{e}^{- i\phi /2}{\cos}^2\left(\theta /2\right){\left\langle \downarrow |\uparrow \right\rangle}_x $$
$$ -{e}^{- i\phi /2}{\sin}^2\left(\theta /2\right){\left\langle \uparrow |\downarrow \right\rangle}_x+\sin \left(\theta /2\right)\cos \left(\theta /2\right){\left\langle \downarrow |\downarrow \right\rangle}_x $$

Using the Eqs. (A.1) and (A.2) and noting the spinor relations

$$ {\left\langle \uparrow |\uparrow \right\rangle}_x=0,{\left\langle \downarrow |\uparrow \right\rangle}_x=\frac{1}{2}={\left\langle \uparrow |\downarrow \right\rangle}_x,{\left\langle \downarrow |\downarrow \right\rangle}_x=0, $$

one may write

$$ {\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_x=\frac{1}{2}\left(\cos \phi \cos \theta -i\sin \phi \right) $$

Proceeding in similar manner,

$$ {\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_y=\frac{1}{2}\left(i\cos \phi +\cos \theta \sin \phi \right) $$

and

$$ {\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_z=\frac{1}{2}\left(-\sin \theta \right) $$

In this context, we define the three mutual orthogonal vectors

$$ {\widehat{r}}_1=\cos \theta \cos \phi \widehat{i}+\cos \theta \sin \phi \widehat{j}-\sin \theta \widehat{k} $$
(A.14)
$$ {\widehat{r}}_2=\sin \phi \widehat{i}+\cos \phi \widehat{j} $$
(A.15)

and

$$ {\widehat{r}}_3=\sin \theta \cos \phi \widehat{i}+\sin \theta \sin \phi \widehat{j}+\cos \theta \widehat{k} $$
(A.16)

Therefore,

$$ {\displaystyle \begin{array}{l}\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle =\widehat{i}{\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_x+\widehat{j}{\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_y+\widehat{k}{\left\langle {\downarrow}^{\prime }|{\uparrow}^{\prime}\right\rangle}_z\\ {}=\frac{1}{2}\left[\left(\cos \phi \cos \theta -i\sin \phi \right)\widehat{i}+\left(i\cos \phi +\cos \theta \sin \phi \right)\widehat{j}+\left(-\sin \theta \right)\widehat{k}\right]\\ {}=\frac{1}{2}\left[\left({\widehat{r}}_1+i{\widehat{r}}_2\right)\right]=-\frac{1}{2}\left[\left(i{\widehat{r}}_1-{\widehat{r}}_2\right)\right]\end{array}} $$
(A.17)

It may be noted that the magnitude of vector \( \frac{1}{2}\left[\left({\widehat{r}}_1+i{\widehat{r}}_2\right)\right] \) is always unity and is independent of the polar angles θ andϕ.

By similar reasoning, one can write

$$ {\displaystyle \begin{array}{l}\left\langle {\uparrow}^{\prime }|{\uparrow}^{\prime}\right\rangle =\frac{1}{2}\left[\left(\cos \phi \sin \theta \right)\widehat{i}+\left(\sin \phi \sin \theta \right)\widehat{j}+\left(\cos \theta \right)\widehat{k}\right]\\ {}=\frac{1}{2}{\widehat{r}}_3\ \mathrm{and}\ \left\langle {\downarrow}^{\prime }|{\downarrow}^{\prime}\right\rangle =-\frac{1}{2}{\widehat{r}}_3,\left\langle {\uparrow}^{\prime }|{\downarrow}^{\prime}\right\rangle =\frac{1}{2}\left({\widehat{r}}_1-i{\widehat{r}}_2\right)\end{array}} $$
(A.18)

Thus, using Eqs. (A.13a) and (A.17), one can have a simplified form of IME as below

$$ {\displaystyle \begin{array}{l}{Z}_{cv}\left(\mathrm{k}\right)=i\left\{\frac{1}{4}\left(\frac{\mathrm{\hslash}{E_g}^{3/2}}{{\left(\zeta \left(\overrightarrow{k}\right)+{\delta}^{\prime}\right)}^2{\left({m}_r\right)}^{1/2}}\right)\right.\\ {}\times \left.\left(1-{\delta}^{\prime }/{E}_g\right)\left(2-{\delta}^{\prime }/{E}_g+2{\left({\delta}^{\prime }/{E}_g\right)}^2-4{\Delta}^2/3\chi \right)\right\}\frac{1}{2}\left[\left({\widehat{r}}_1+i{\widehat{r}}_2\right)\right]\end{array}} $$
(A.19)

Derivation of \( {M}_{n{n}^{\prime }}\left({k}_{\perp}\right) \)

The point σ which has the greatest contribution to the integration in Eq. (7) is the point where conduction and valence bands meet in the complex plane. Therefore, at this pointk z  = σ,

$$ {E}_c\left(\sigma \right)={E}_v\left(\sigma \right) $$
(B.1)

Using Eqs. (17) and (A.18), we obtain

$$ \sigma =\pm i\sqrt{\eta^2+{k_{\perp}}^2} $$
(B.2)

where \( \eta =\sqrt{m_r{E}_g/{\mathrm{\hslash}}^2} \).

From Eqs. (7), (17), and (B.2)

$$ {M}_{cv}\left({k}_{\perp}\right)=\frac{F}{G}\underset{-G/2}{\overset{G/2}{\int }}{Z}_{cv}\left(\mathrm{k}\right)\exp \left(\frac{i}{F}\underset{0}{\overset{\sigma }{\int }}\zeta \left(\overrightarrow{k}\right){dk}_{z^{\prime }}\right){dk}_z $$
(B.3)

It is noted that the δ in the denominator of can be neglected relative to magnitude of \( \zeta \left(\overrightarrow{k}\right) \) for evaluating the integration. Then, in the vicinity of the point σ at which \( \zeta \left(\overrightarrow{k}\right) \) = 0 contributes maximum to the integral. The integration may be evaluated similar to [14] by expanding \( \zeta \left(\overrightarrow{k}\right) \) as a function of k z and ρ. Using Eq. (17) and (B.2), \( \zeta \left(\overrightarrow{k}\right) \) can be expressed as

$$ \zeta \left(\overrightarrow{k}\right)=\frac{\mathrm{\hslash}{E_g}^{1/2}}{{m_r}^{1/2}}\sqrt{{k_z}^2-{\sigma}^2}=\frac{\mathrm{\hslash}{E_g}^{1/2}}{{m_r}^{1/2}}\sqrt{k_z+\sigma}\sqrt{k_z-\sigma } $$

which simplifies to

$$ \zeta \left(\overrightarrow{k}\right)=\frac{\sqrt{2}\mathrm{\hslash}{E_g}^{1/2}}{{m_r}^{1/2}}{\sigma}^{1/2}{\rho}^{1/2} $$
(B.4)

for

$$ {k}_z-\sigma =\rho $$
(B.5)

leading to the value of the integral inside the exponent of Eq. (B.3) as

$$ \underset{0}{\overset{\sigma }{\int }}\zeta \left(\overrightarrow{k}\right){dk}_z=\frac{2\sqrt{2}\mathrm{\hslash}{E_g}^{1/2}}{3{m_r}^{1/2}}\left|{\sigma}^2\right| $$
(B.6)

atk z  = 0. Next, substituting this value and extending the limits of integration to ±∞ in Eq. (B.3), one can obtain

$$ {M}_{cv}\left({k}_{\perp}\right)=\frac{iF{\Upsilon}_{cv}}{G}\times \frac{1}{2}\left[\left({\widehat{r}}_1+i{\widehat{r}}_2\right)\right]\left(\frac{\mathrm{\hslash}{E_g}^{3/2}}{{\left({m}_r\right)}^{1/2}}\right)\underset{0}{\overset{\infty }{\int }}\left(\frac{dk_z}{\left({\eta}^2+{k_{\perp}}^2\right)}\right)\exp \left(\frac{i}{F}\underset{0}{\overset{\sigma }{\int }}\zeta \left(\overrightarrow{k}\right){dk}_{z^{\prime }}\right) $$

which can be further manipulated to evaluate for k z  = σ as

$$ {M}_{cv}\left({k}_{\perp}\right)=\frac{\pi F{\Upsilon}_{cv}{\left({m}_r{E}_g\right)}^{1/2}}{\left(3/2\right)\mathrm{\hslash}\sigma G}\times \frac{1}{2}\left[\left({\widehat{r}}_1+i{\widehat{r}}_2\right)\right]\exp \left(-\frac{\pi \mathrm{\hslash}{\sigma}^2{E_g}^{1/2}}{4F{\left({m}_r\right)}^{1/2}}\right) $$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Biswas, M. & Maitra, S. Effect of Band Nonparabolicity on the Inter Band Tunneling in Semiconductors. Braz J Phys 48, 330–341 (2018). https://doi.org/10.1007/s13538-018-0583-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0583-7

Keywords

Navigation