Skip to main content
Log in

White Dwarf Spectra for Studies of Time Variation of the Fine Structure Constant

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We report a newly updated constraint on space-time variation in the fine structure constant, \( \alpha =\frac{e^2}{4\pi {\varepsilon}_0\mathit{\hslash c}} \), from an analysis of white dwarf spectra. We obtain ∆α/α = (0.007 ± 0.087) × 10−6 from a comparison of laboratory spectra of Fe V with those found in the spectra from the white dwarf G191-B2B. The obtained result in this study is used to suggest further improvement in observational technique which would lead to a tighter constraint on ∆α/α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P.J. Mohr, B.N. Taylor, B.N. Newell, CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527–1605 (2012)

    ADS  Google Scholar 

  2. M.T. Murphy, J.K. Webb, V.V. Flambaum, Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. R. Astron. Soc. 345, 609–638 (2003)

    ADS  Google Scholar 

  3. M.T. Murphy, J.K. Webb, et al., Astron. Phys. Space. Sci. 283, 577 (2003)

    ADS  Google Scholar 

  4. J.K. Webb, M.M. Murphy, et al., Astron. Phys. Space. Sci 283, 565 (2003)

    ADS  Google Scholar 

  5. J.K. Webb, J.A. King, M.T. Murphy, V.V. Flambaum, R.F. Carswell, M.B. Bainbridge, Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011)

    ADS  Google Scholar 

  6. J.K. Webb, A. Wright, et al., Mem. S. A. It. 85, 57 (2014)

    ADS  Google Scholar 

  7. H. Chand, R. Srianand, P. Petitjean, B. Aracil, Probing the time-variation of the fine-structure constant: results based on Si IV doublets from a UVES sample. Astron. Astrophys. 430, 47–58 (2005)

    ADS  Google Scholar 

  8. H. Chand, R. Srianand, P. Petitjean, B. Aracil, R. Quast, D. Reimers, Variation of the fine-structure constant: very high resolution spectrum of QSO HE 0515-4414. Astron. Astrophys. 451, 45–56 (2006)

    ADS  Google Scholar 

  9. S.A. Levshakov, M. Centurion, P. Molaro, et al., Most precise single redshift bound to Delta alpha/alpha. Astron. Astrophys.449, 879–889 (2006)

    ADS  Google Scholar 

  10. S.A. Levshakov, F. F Combes, F. Boone, et al., An upper limit to the variation in the fundamental constants at redshift z = 5.2. Astron. Astrophys. 540, L9 (2012)

    ADS  Google Scholar 

  11. P. Molaro, M. Centurion, J.B. Whitmore, et al., Astron. Astrophys.555, A68 (2013)

    Google Scholar 

  12. M.T. Murphy, J.K. Webb, V.V. Flambaum, Revision of VLT/UVES constraints on a varying fine-structure constant. Mon. Not. R. Astron. Soc. 384, 1053–1062 (2008)

    ADS  Google Scholar 

  13. L.L. Cowie, A. Songaila, Astrophysical limits on the evolution of dimensionless physical constants over cosmological time. Astrophys. J. 453, 596 (1995)

    ADS  Google Scholar 

  14. C.L. Carilli, K.M. Menten, J.T. Stocke, et al., Phys. Rev. Lett. 85, 5511 (2001)

    ADS  Google Scholar 

  15. R. Srianand, H. Chand, P. Petitjean, B. Aracil, Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett. 92, 121302 (2004)

    ADS  Google Scholar 

  16. R. Srianand, H. Chand, P. Petitjean, B. Aracil, Srianand et al. reply. Phys. Rev. Lett. 99, 239002 (2007)

    ADS  Google Scholar 

  17. J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater, J.D. Barrow, Search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884–887 (1999)

    ADS  Google Scholar 

  18. J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska, A.M. Wolfe, Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001)

    ADS  Google Scholar 

  19. M.T. Murphy, V.V. Flambaum, S. Muller, C. Henkel, Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe. Science 320, 1611–1613 (2008)

    ADS  Google Scholar 

  20. N. Kanekar, J.N. Chengalur, T. Ghosh, Conjugate 18 cm OH satellite lines at a cosmological distance. Phys. Rev. Lett. 93, 051302 (2004)

    ADS  Google Scholar 

  21. N. Kanekar, G.I. Langston, J.T. Stocke, C.L. Carilli, K.M. Menten, Constraining fundamental constant evolution with HI and OH lines. Astrophys. J. 746, L16 (2012)

    ADS  Google Scholar 

  22. J.C. Berengut et al., Mem. Soc. Astron. Italiana. 80, 795 (2009)

    ADS  Google Scholar 

  23. N. Kanekar, Astrophys. J. 728, L12 (2011)

    ADS  Google Scholar 

  24. J. Bagdonaite et al., Science 4, 46 (2013)

    ADS  Google Scholar 

  25. J. Bagdonaite et al., Phys. Rev. Lett. 111, 23110 (2013)

    Google Scholar 

  26. H. Rahmani, M. Wendt, R. Srianand, P. Noterdaeme, P. Petitjean, P. Molaro, J.B. Whitmore, M.T. Murphy, M. Centurion, H. Fathivavsari, S. D’Odorico, T.M. Evans, S.A. Levshakov, S. Lopez, C.J.A.P. Martins, D. Reimers, G. Vladilo, The UVES large program for testing fundamental physics – II. Constraints on a change in μ towards quasar HE 0027−1836★. Mon. Not. R. Astron. Soc. 435, 861–878 (2013)

    ADS  Google Scholar 

  27. M.T. Murphy, V.V. Flambaum, J.K. Webb, et al., Lect. Notes Phys. 648, 131 (2014)

    ADS  Google Scholar 

  28. J.A. King, J.K. Webb, M.T. Murphy, et al., Mon. Not. R. Astron. Soc. 422, 4 (2012)

    Google Scholar 

  29. T.D. Le, A stringent limit on variation of the fine-structure constant using absorption line multiplets in the early universe. Astrophysics 59, 285–291 (2016)

    ADS  Google Scholar 

  30. J. Magueijo, I.D. Barrow, H.B. Sandvik, Is it e or is it c? Experimental tests of varying alpha. Phys. Lett. B. 549, 284–289 (2002)

    ADS  Google Scholar 

  31. V.V. Flambaum, E.V. Shuryak, AIP Conf. Proc. 995, 1 (2008)

    ADS  Google Scholar 

  32. O. Minazzoli, A. Hees, Dilatons with intrinsic decouplings. Phys. Rev. D. 94, 064038 (2016)

    ADS  MathSciNet  Google Scholar 

  33. V.A. Dzuba, V.V. Flambaum, J.K. Webb, Space-time variation of physical constants and relativistic corrections in atoms. Phys. Rev. Lett. 82, 888–891 (1999)

    ADS  Google Scholar 

  34. P. Lorén-Aguilar et al., Time variation of G and within models with extra dimensions. Class. Quant. Grav. 20, 3885–3896 (2003)

    ADS  MATH  Google Scholar 

  35. E. García-Berro et al., The variation of the gravitational constant inferred from the Hubble diagram of Type Ia supernovae. Int. J. Mod. Phys. D. 15, 1163–1174 (2006)

    ADS  MATH  Google Scholar 

  36. E. García-Berro et al., J. Cosmol. Astropart. Phys. 5, 21 (2011)

    ADS  Google Scholar 

  37. E. García-Berro et al., Mem. S. A. It. 85, 118 (2014)

    ADS  Google Scholar 

  38. T. Damour, G.W. Gibbons, J.H. Taylor, Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 61, 1151–1154 (1988)

    ADS  Google Scholar 

  39. T. Damour, J.H. Taylor, On the orbital period change of the binary pulsar PSR 1913 + 16. Astrophys. J. 366, 501 (1991)

    ADS  Google Scholar 

  40. V.M. Kaspi, J.H. Taylor, High-precision timing of millisecond pulsars. 3: long-term monitoring of PSRs B1855+09 and B1937+21. Astrophys. J. 428, 713 (1994)

    ADS  Google Scholar 

  41. D.B. Guenther, L.M. Krauss, P. Demarque, Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871–876 (1998)

    ADS  Google Scholar 

  42. S.E. Thorsett, The gravitational constant, the Chandrasekhar limit, and neutron star masses. Phys. Rev. Lett. 77, 1432–1435 (1996)

    ADS  Google Scholar 

  43. F. Hofmann, J. Muller, L. Biskupek, Astron. Astrophys. L5, 522 (2010)

    Google Scholar 

  44. O.G. Benvenuto, E.G. Berro, J. Isern, Asteroseismological bound on Ġ/G from pulsating white dwarfs. Phys. Rev. D. 69, 082002 (2004)

    ADS  Google Scholar 

  45. A.H. Corsico et al., J. Cosmol. Astropart. Phys. 6, 032 (2013)

    ADS  Google Scholar 

  46. C.J. Copi, A.N. Davis, L.M. Krauss, New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett. 92, 171301 (2004)

    ADS  Google Scholar 

  47. C. Bambi, M. Giannotti, F.L. Villante, Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate. Phys. Rev. D. 71, 123524 (2005)

    ADS  Google Scholar 

  48. J.C. Berengut, V.V. Flambaum, A. Ong, J.K. Webb, J.D. Barrow, M.A. Barstow, S.P. Preval, J.B. Holberg, Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. Phys. Rev. Lett. 111, 010801 (2013)

    ADS  Google Scholar 

  49. I.I. Agafonova, P. Molaro, S.A. Levshakov, J.L. Hou, First measurement of Mg isotope abundances at high redshifts and accurate estimate of Δα/α. Astron. Astrophys. 529, A28 (2011)

    ADS  Google Scholar 

  50. K. Griest, J.B. Whitmore, A.M. Wolfe, J.X. Prochaska, J.C. Howk, G.W. Marcy, Wavelength accuracy of the Keck HIRES spectrograph and measuring changes in the fine structure constant. Astrphys. J. 708, 158–170 (2010)

    ADS  Google Scholar 

  51. J.B. Whitmore, Murphy, K. Griest, Astrophys. J. 723, 89–99 (2010)

    ADS  Google Scholar 

  52. D.E. Welty, L.M. Hobbs, V.P. Kulkarni, A high-resolution survey of interstellar NA I D1 lines. Astrophys. J. 436, 152 (1994)

    ADS  Google Scholar 

  53. D.E. Welty, D.C. Morton, L.M. Hobbs, A high-resolution survey of interstellar CA II absorption. Astrophys. J. 106, 533 (1996)

    ADS  Google Scholar 

  54. M. Wendt, P. Molaro, Robust limit on a varying proton-to-electron mass ratio from a single H2 system. Astron. Astrophys. 526, A96 (2011)

    ADS  Google Scholar 

  55. M.T. Murphy, J.K. Webb, V.V. Flambaum, C.W. Churchill, J.X. Prochaska, Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors. Mon. Not. R. Astron. Soc. 327, 1223–1236 (2001)

    ADS  Google Scholar 

  56. H. Chand, R. Srianand, P. Petitjean, B. Aracil, Probing the cosmological variation of the fine-structure constant: results based on VLT-UVES sample. Astron. Astrophys. 417, 853–871 (2004)

    ADS  Google Scholar 

  57. G. Nave, C.J. Sansonetti, J. Opt. Soc. Am. B28, 737 (2011)

    ADS  Google Scholar 

  58. A. Kramida, Energy levels and spectral lines of quadruply ionized iron (Fe V). Astrophys. J. Suppl. Ser. 212, 11 (2014)

    ADS  Google Scholar 

  59. M.T. Murphy, J.C. Berengut, Mon. Not. R. Astron. Soc. 438, 388 (2014)

    ADS  Google Scholar 

  60. M.B. Bainbridge, J.K. Webb, Mon. Not. R. Astron. Soc. 468, 1639 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Le.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.D. White Dwarf Spectra for Studies of Time Variation of the Fine Structure Constant. Braz J Phys 49, 256–261 (2019). https://doi.org/10.1007/s13538-018-00634-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-00634-5

Keywords

Navigation