Skip to main content
Log in

Probable Heavy Particle Decays from 306–339128 Superheavy Nuclei

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The heavy particle decays that are probable from the isotopes of Z = 128 superheavy nuclei within the range A = 306–339 have been analyzed within the Coulomb and proximity potential model (CPPM). The study includes the evaluation of heavy particle decay half-lives of 24 clusters, including both odd and even clusters that are supposed to be emitted from the Z = 128 superheavy nuclei. The predicted values in comparison with the models Universal curve (UNIV), Universal decay law (UDL), and scaling law of Horoi et al. are observed to follow the same trend, and almost all the values lie well within the experimental limit (T 1/2 <1030s). The interesting point of the study is the confirmation of the importance of neutron magicity in the superheavy region, noticed from the plots of log10(T 1/2) vs. neutron number of the daughter nuclei. The minimum  observed corresponds to the daughter nucleus with N = 184, which strongly supports the possibility of N = 184 to be a shell closure number. Also, the abrupt increase in the half-lives at A = 330 of the parent nuclei is the signature of neutron magicity at N = 202 associated with the parent nuclei. In addition, in the emission of odd mass clusters, the odd–even staggering (OES) effect is found which is more prominent in the case of heavy odd mass clusters. Importantly, the different slopes and intercepts obtained from the Geiger–Nuttall plots of log10(T 1/2) vs. Q −1/2 confirming the presence of shell closure effect and the plot of universal curve of log10(T 1/2) vs.−lnP revealed the reliability of the model CPPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. G. Werner, J. A. Wheeler, Superheavy Nuclei. Phys. Rev. 109, 126 (1958). doi:10.1103/PhysRev.109.126

    Article  ADS  Google Scholar 

  2. R. A. Rydin, A new approach to finding magic numbers for heavy and superheavy elements. Ann. Nucl. Energy 38, 238 (2011). doi:10.1016/j.anucene.2010.11.004

    Article  Google Scholar 

  3. S. Hofmann, Exploring the island of superheavy elements, Phys. 3, 31 (2010), http://physics.aps.org/articles/v3/31?referer=apshome

  4. S. Hofmann, G. Munzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733 (2000). doi:10.1103/RevModPhys.72.733

    Article  ADS  Google Scholar 

  5. K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, H. S. Xu, T. Yamaguchi, A. Yoneda, A. Yoshida, Y. L. Zhao, Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113. J. Phys. Soc. Jpn. 73, 2593 (2004). doi:10.1143/JPSJ.73.2593

    Article  ADS  Google Scholar 

  6. Y. T. Oganessian, Heaviest nuclei from 48Ca-induced reactions. J. Phys. G 34, R165 (2007). doi:10.1088/0954-3899/34/4/R01

    Article  ADS  Google Scholar 

  7. Y. T. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Y. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, P. A. Wilk, Synthesis of a New Element with Atomic Number Z=117. Phys. Rev. Lett. 104, 142502 (2010). doi:10.1103/PhysRevLett.104.142502

    Article  ADS  Google Scholar 

  8. V. I. Zagrebaev, W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions. Phys. Rev. C 78, 034610 (2008). doi:10.1103/PhysRevC.78.034610

    Article  ADS  Google Scholar 

  9. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, S. N. Dmitriev, R. A. Henderson, K. J. Moody, J. M. Kenneally, J. H. Landrum, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, Attempt to produce element 120 in the 244Pu+58Fe reaction. Phys. Rev. C 79, 024603 (2009). doi:10.1103/PhysRevC.79.024603

    Article  ADS  Google Scholar 

  10. V. I. Zagrebaev, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in transfer reactions. Phys. Rev. C 83, 044618 (2011). doi:10.1103/PhysRevC.83.044618

    Article  ADS  Google Scholar 

  11. V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in neutron capture processes. Phys. Rev. C 84, 044617 (2011). doi:10.1103/PhysRevC.84.044617

    Article  ADS  Google Scholar 

  12. D. N. Poenaru, W. Greiner, R. Gherghescu, New island of cluster emitters. Phys. Rev. C 47, 2030 (1993). doi:10.1103/PhysRevC.47.2030

    Article  ADS  Google Scholar 

  13. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Heavy-Particle Radioactivity of Superheavy Nuclei. Phys. Rev. Lett. 107, 062503 (2011). doi:10.1103/PhysRevLett.107.062503

    Article  ADS  Google Scholar 

  14. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Cluster decay of superheavy nuclei. Phys. Rev. C 85, 034615 (2012). doi:10.1103/PhysRevC.85.034615

    Article  ADS  Google Scholar 

  15. H. J. Rose, G. A. Jones, A new kind of natural radioactivity, Nat Lond 307, 245 (1984), http://www.nature.com/nature/journal/v307/n5948/abs/307245a0.html

  16. A. Sandulescu, D. N. Poenaru, W. Greiner, New type of decay of heavy nuclei intermediate between fission and alpha decay, Sovt. J. Part. Nucl. 11, 528 (1980), http://www.osti.gov/scitech/biblio/6189038

  17. D. N. Poenaru, Y. Nagame, R. A. Gherghescu, W. Greiner, Systematics of cluster decay modes. Phys. Rev. C 65, 054308 (2002). doi:10.1103/PhysRevC.65.054308

    Article  ADS  Google Scholar 

  18. S. Cwiok, J. Dobaczewski, P. H. Heenen, P. Magierski, W. Nazarewicz, Shell structure of the superheavy elements. Nucl. Phys. A 611, 211 (1996). doi:10.1016/S0375-9474(96)00337-5

    Article  ADS  Google Scholar 

  19. A. T. Kruppa, M. Bender, W. Nazarewicz, P. G. Reinhard, T. Vertse, S. Cwiok, Shell corrections of superheavy nuclei in self-consistent calculations. Phys. Rev. C 61, 034313 (2000). doi:10.1103/PhysRevC.61.034313

    Article  ADS  Google Scholar 

  20. S. Cwiok, W. Nazarewicz, P. H. Heenen, Structure of Odd-N Superheavy Elements. Phys. Rev. Lett. 83, 1108 (1999). doi:10.1103/PhysRevLett.83.1108

    Article  ADS  Google Scholar 

  21. M. Bender, K. Rutz, P. G. Reinhard, J. A. Maruhn, W. Greiner, Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999). doi:10.1103/PhysRevC.60.034304

    Article  ADS  Google Scholar 

  22. S. K. Patra, C. L. Wu, C. R. Praharaj, R. K. Gupta, A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach. Nucl. Phys. A 651, 117 (1999). doi:10.1016/S0375-9474(99)00129-3

    Article  ADS  Google Scholar 

  23. R. K. Gupta, S. Kumar, R. Kumar, M. Balasubramaniam, W. Scheid, Structure effects in the region of superheavy elements via the α-decay chain of 293118. J. Phys. G, Nucl. Part. Phys 28, 2875 (2002). doi:10.1088/0954-3899/28/11/310

    Article  ADS  Google Scholar 

  24. K. P. Santhosh, R. K. Biju, Alpha decay, cluster decay and spontaneous fission in294–326122 isotopes. J. Phys. G, Nucl. Part. Phys 36, 015107 (2009). doi:10.1088/0954-3899/36/1/015107

    Article  ADS  Google Scholar 

  25. P. R. Chowdhury, C. Samanta, D. N. Basu, Search for long lived heaviest nuclei beyond the valley of stability. Phys. Rev. C 77, 044603 (2008). doi:10.1103/PhysRevC.77.044603

    Article  ADS  Google Scholar 

  26. Y. J. Shi, W. J. Swiatecki, Estimates of the influence of nuclear deformations and shell effects on the lifetimes of exotic radioactivities. Nucl. Phys. A 464, 205 (1987). doi:10.1016/0375-9474(87)90335-6

    Article  ADS  Google Scholar 

  27. D. N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Spontaneous emission of heavy clusters. J. Phys. G: Nucl. Part. Phys. 10, L183 (1984). doi:10.1088/0305-4616/10/8/004

    Article  ADS  Google Scholar 

  28. D. N. Poenaru, W. Greiner, Rare decay modes by cluster emission from nuclei. J. Phys. G: Nucl. Part. Phys. 17, S443 (1991). doi:10.1088/0954-3899/17/S/045

    Article  ADS  Google Scholar 

  29. G. Shanmugam, B. Kamalaharan, Application of a cubic barrier in exotic decay studies. Phys. Rev. C 38, 1377 (1988). doi:10.1103/PhysRevC.38.1377

    Article  ADS  Google Scholar 

  30. B. Buck, A. C. Merchant, S. M. Perez, Unifying model for alpha decay and exotic decay of heavy nuclei. J. Phys. G: Nucl. Part. Phys. 17, L91 (1991). doi:10.1088/0954-3899/17/6/001

    Article  ADS  Google Scholar 

  31. B. Buck, A. C. Merchant, S. M. Perez, P. Tripe, Calculation of exotic decay half-lives for all observed cases. J. Phys. G: Nucl. Part. Phys. 20, 351 (1994). doi:10.1088/0954-3899/20/2/013

    Article  ADS  Google Scholar 

  32. S. S. Malik, R. K. Gupta, Theory of cluster radioactive decay and of cluster formation in nuclei. Phys. Rev. C 39, 1992 (1989). doi:10.1103/PhysRevC.39.1992

    Article  ADS  Google Scholar 

  33. K. P. Santhosh, A. Joseph, Exotic decay in Ba isotopes via 12C emission. Pramana J. Phys. 55, 375 (2000). doi:10.1007/s12043-000-0067-4

    Article  ADS  Google Scholar 

  34. K. P. Santhosh, A. Joseph, Exotic decay in cerium isotopes. Pramana J. Phys. 58, 611 (2002). doi:10.1007/s12043-002-0019-2

    Article  ADS  Google Scholar 

  35. K. P. Santhosh, Fine structure in the cluster decay of radium isotopes. Phys. Scr. 81, 015203 (2010). doi:10.1088/0031-8949/81/01/015203

    Article  ADS  Google Scholar 

  36. K. P. Santhosh, Cluster radioactivity leading to doubly magic 100Sn and 132Sn daughters. Pramana J. Phys. 76, 431 (2011). doi:10.1007/s12043-011-0007-5

    Article  ADS  Google Scholar 

  37. K. P. Santhosh, B. Priyanka, ALPHA-DECAY STUDIES ON 130-153Eu NUCLEI. Int J Mod. Phys. E 22, 1350081 (2013). doi:10.1142/S021830131350081X

    Article  ADS  Google Scholar 

  38. K. P. Santhosh, B. Priyanka, Heavy particle radioactivity from superheavy nuclei leading to298114 daughter nuclei. Nucl. Phys. A 929, 20 (2014). doi:10.1016/j.nuclphysa.2014.05.015

    Article  ADS  Google Scholar 

  39. Y. J. Shi, W. J. Swiatecki, Estimates of radioactive decay by the emission of nuclei heavier than α-particles. Nucl. Phys. A 438, 450 (1985). doi:10.1016/0375-9474(85)90385-9

    Article  ADS  Google Scholar 

  40. J. Blocki, J. Randrup, W. J. Swiatecki, C. F. Tsang, Proximity forces. Ann. Phys. (NY) 105, 427 (1977). doi:10.1016/0003-4916(77)90249-4

    Article  ADS  Google Scholar 

  41. I. Dutt, R. K. Puri, Analytical parametrization of fusion barriers using proximity potentials. Phys. Rev. C 81, 064608 (2010). doi:10.1103/PhysRevC.81.064608

    Article  ADS  Google Scholar 

  42. J. Blocki, W. J. Swiatecki, A generalization of the Proximity Force Theorem. Ann. Phys. (NY) 132, 53 (1981). doi:10.1016/0003-4916(81)90268-2

    Article  ADS  Google Scholar 

  43. D. N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Atomic nuclei decay modes by spontaneous emission of heavy ions. Phys. Rev. C 32, 572 (1985). doi:10.1103/PhysRevC.32.572

    Article  ADS  Google Scholar 

  44. V. Y. Denisov, H. Ikezoe, α-nucleus potential for α-decay and subbarrier fusion. Phys. Rev. C 72, 064613 (2005). doi:10.1103/PhysRevC.72.064613

    Article  ADS  Google Scholar 

  45. K. N. Huang, M. Aoyagi, M. H. Chen, B. Crasemann, H. Mark, Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations 2 ≤ Z ≤ 106. At. Data Nucl. Data Tables 18, 243 (1976). doi:10.1016/0092-640X(76)90027-9

    Article  ADS  Google Scholar 

  46. M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, The Ame2012 atomic mass evaluation. Chin. Phys. C 36, 1603 (2012). doi:10.1088/1674-1137/36/12/003

    Article  Google Scholar 

  47. H. Koura, T. Tachibana, M. Uno, M. Yamada, Nuclidic Mass Formula on a Spherical Basis with an Improved Even-Odd Term, Prog. Theor. Phys. 113, 305 (2005). doi:10.1143/PTP.113.305, http://ptp.oxfordjournals.org/content/113/2/305.short

  48. P. Moller, A. J. Sierk, T. Ichikawa, H. Sagawa, Nuclear groundstate masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109, 1 (2016). doi:10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  49. D. N. Poenaru, W. Greiner, Cluster preformation as barrier penetrability. Phys. Scr. 44, 427 (1991). doi:10.1088/0031-8949/44/5/004

    Article  ADS  Google Scholar 

  50. D. N. Poenaru, I. H. Plonski, W. Greiner, α-decay half-lives of superheavy nuclei. Phys. Rev. C 74, 014312 (2006). doi:10.1103/PhysRevC.74.014312

    Article  ADS  Google Scholar 

  51. D. N. Poenaru, I. H. Plonski, R. A. Gherghescu, W. Greiner, Valleys due to Pb and Sn on the potential energy surface of superheavy and lighter α-emitting nuclei. J. Phys. G: Nucl. Part. Phys. 32, 1223 (2006). doi:10.1088/0954-3899/32/9/002

    Article  ADS  Google Scholar 

  52. C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, Universal Decay Law in Charged-Particle Emission and Exotic Cluster Radioactivity. Phys. Rev. Lett. 103, 072501 (2009). doi:10.1103/PhysRevLett.103.072501

    Article  ADS  Google Scholar 

  53. C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, D. Hu, Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law. Phys. Rev. C 80, 044326 (2009). doi:10.1103/PhysRevC.80.044326

    Article  ADS  Google Scholar 

  54. M. Horoi, Scaling behaviour in cluster decay. J. Phys. G: Nucl. Part. Phys. 30, 945 (2004). doi:10.1088/0954-3899/30/7/010

    Article  ADS  Google Scholar 

  55. Q. Mo, M. Liu, N. Wang, Systematic study of shell gaps in nuclei. Phys. Rev. C 90, 024320 (2014). doi:10.1103/PhysRevC.90.024320

    Article  ADS  Google Scholar 

  56. S. Cht. Mavrodiev and M.A. Deliyergiyev, Numerical Generalization of the Bethe-Weizsäcker Mass Formula, arXiv:1602.06777 (2016), https://arxiv.org/abs/1602.06777

  57. G. Shanmugam, B. Kamalaharan, Application of a cubic barrier in exotic decay studies. Phys. Rev. C 38, 1377 (1988). doi:10.1103/PhysRevC.38.1377

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Sukumaran, I. Probable Heavy Particle Decays from 306–339128 Superheavy Nuclei. Braz J Phys 46, 754–766 (2016). https://doi.org/10.1007/s13538-016-0461-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0461-0

Keywords

Navigation