Skip to main content
Log in

Impedance of Aqueous Solutions of KCl at the Ultra-low Frequency Range: Use of Cole-Cole Impedance Element to Account for the Frequency Dispersion Peak at 20 mHz

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper reports on the analysis of dispersion in the imaginary part of impedance often observed at low frequencies in a variety of systems. The experimental data were obtained with an electrolytic cell containing KCl aqueous solution in the frequency range from 0.1 mHz to 10 MHz, where the use of ultra-low frequencies helps clarify the analysis of the imaginary impedance dispersion. It is shown that the low frequency dispersion described in the literature is the tail of a relaxation peak located at f ≅ 20 mHz. This ultra-low frequency dispersion peak is analyzed with a Cole-Cole impedance element, being associated with the electric double layer at the metal-electrolyte interface. Quantitative information can be extracted for the double layer, including its thickness (∼1 nm) and electrical resistivity (∼50 GΩm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy (Wiley & Sons, New York, 1987)

    Google Scholar 

  2. F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Germany, 2003)

    Google Scholar 

  3. M. Becchi, C. Avendano, A. Stragazzi, G. Barbero, Impedance Spectroscopy of water solutions: the role of ions at the liquid-electrode interface. J. Chem. Phys. B 109, 23444–23449 (2005)

    Article  Google Scholar 

  4. G. Barbero, L.R. Evangelista, Adsorption phenomena of neutral particles and a kinetic equation at the interface. Phys. Rev. E 70, 031605 (2004)

    Article  ADS  Google Scholar 

  5. G. Barbero, Influence of adsorption phenomenon on the impedance spectroscopy of a cell of liquid. Phys. Rev. E 71, 062201 (2005)

    Article  ADS  Google Scholar 

  6. G. Barbero, A.M. Figueiredo Neto, F.C.M. Freire, M. Scarlerandi, Frequency dependence of the electrical impedance of electrolytic cells: the role of the ionic adsorption/desorption phenomena and the Stern layer. Phys. Lett. A 360, 179–182 (2006)

    Article  ADS  Google Scholar 

  7. G. Barbero, M. Becchi, A. Stragazzi, J. Le Digabel, A.M. Figueiredo Neto, Experimental evidence for the adsorption-desorption phenomenon of the spectroscopy impedance measurements of an electrolytic cell. J. Appl. Phys. 101, 044102 (2007)

    Article  ADS  Google Scholar 

  8. G. Derfel, G. Barbero, Numerical study of ionic contribution to susceptibility and impedance of dielectric layer. J. Mol. Liq. 150, 43–50 (2009)

    Article  Google Scholar 

  9. G. Barbero, F. Batalioto, A.M. Figueiredo Neto, Impedance spectroscopy of an electrolytic cell limited by ohmic electrodes. J. Appl. Phys. 101, 054102 (2007)

    Article  ADS  Google Scholar 

  10. D.M. Taylor, A.G. MacDonald, AC admittance of the metal-insulator-electrolyte interface. J. Phys. D. Appl. Phys. 20, 1277–1283 (1987)

    Article  ADS  Google Scholar 

  11. J.-B. Jorcim, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedande spectroscopy. Electrochim. Acta 51, 1473–1479 (2006)

    Article  Google Scholar 

  12. W.G. Pell, A. Zolfaghari, B.E. Conway, Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film. J. Electroanal. Chem. 532, 13–23 (2002)

    Article  Google Scholar 

  13. E.K. Lenzi, J.L. de Paula, F.R.G.B. Silva, L.R. Evangelista, A connection between anomalous Poisson-Nernst-Planck model and equivalent circuits with constant phase elements. J. Chem. Phys. C 117, 23685–23690 (2013)

    Article  Google Scholar 

  14. A.R. Duarte, F. Batalioto, G. Barbero, A.M. Figueiredo Neto, Measurement of the impedance of aqueous solutions of KCl: an analysis using an extension of Poisson-Nernst-Planck model. Appl. Phys. Lett. 105, 022901 (2014)

    Article  ADS  Google Scholar 

  15. A.R. Duarte, Ph.D. Thesis, São Paulo University, Brazil (2015)

  16. As described in the 1260A Impedance Analyzer operating manual

  17. Scribner and Associates, Inc., Charlottesville, VA, USA

  18. R.H.M. van de Leur, A critical consideration on the interpretation of impedance plots. J. Phys. D. Appl. Phys. 24, 1430–1435 (1991)

    Article  ADS  Google Scholar 

  19. J.R. Macdonald, Comparison and evaluation of several models for fitting the frequency response of dispersive systems. J. Chem. Phys. 118, 3258–3267 (2003)

    Article  ADS  Google Scholar 

  20. J.R. Macdonald, Analysis of dielectric and conductive dispersion above Tg in glass-forming molecular liquids. J. Chem. Phys. 112, 13684–13694 (2008)

    Article  Google Scholar 

  21. K.J. Woelfel, J.E. Pemberton, Determination of emersed electrochemical interface thickness by ellipsometry: aqueous electrolytes on Ag. J. Electroanal. Chem. 456, 161–169 (1998)

    Article  Google Scholar 

  22. J.B. Bates, Y.T. Chu, W.T. Stribling, Surface topography and impedance of metal-electrolytic interfaces. Phys. Rev. Lett. 60, 627–630 (1988)

    Article  ADS  Google Scholar 

  23. F. Pizzitutti, F. Bruno, Electrode and interfacial polarization in broadband dielectric spectroscopy measurements. Rev. Sci. Instrum. 72, 2502–2504 (2001)

    Article  ADS  Google Scholar 

  24. V.M.-W. Huang, V. Vivier, M.E. Orazem, N. Pébère, B. Tribollet, The apparent constant-phase-element behavior of a disk electrode with faradaic reactions—a global and local impedance analysis. J. Electrochem. Soc. 154, C81–C88 (2007)

    Article  Google Scholar 

  25. F. Batalioto, A.R. Duarte, G. Barbero, A.M. Figueiredo Neto, Dielectric dispersion of water in the frequency range from 10 mHz to 30 MHz. J. Phys. Chem. B 114, 3467–3471 (2010)

    Article  Google Scholar 

  26. K.J. Woefel, J.E. Pemberton, Determination of emersed electrochemical interface thickness by ellipsometry: aqueous electrolytes on Ag. J. Electroanal. Chem. 456, 161–169 (1998)

    Article  Google Scholar 

  27. J.R. Macdonald, Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects. J. Phys. Condens. Matter 22, 495101 (2010)

    Article  Google Scholar 

  28. J.R. Macdonald, Utility and importance of Poisson-Nernst-Planck imittance spectroscopy fitting models. J. Chem. Phys. C 117, 23433–23450 (2013)

    Article  Google Scholar 

  29. E.K. Lenzi, M.K. Lenzi, F.R.G.B. Silva, G. Gonçalves, R. Rossato, R.S. Zola, L.R. Evangelista, A framework to investigate the immittance responses for finite length-situations: fractional diffusion equation, reaction term, and boundary conditions. J. Electroanal. Chem. 712, 82–88 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian foundations FAPESP, CNPq, INEO Project, and CAPES for the financial support and to O. Oliveira Jr. for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Giacometti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacometti, J.A., Alves, N. & Teruya, M.Y. Impedance of Aqueous Solutions of KCl at the Ultra-low Frequency Range: Use of Cole-Cole Impedance Element to Account for the Frequency Dispersion Peak at 20 mHz. Braz J Phys 46, 50–55 (2016). https://doi.org/10.1007/s13538-015-0381-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0381-4

Keywords

Navigation