Skip to main content
Log in

Survival Probability of the Néel State in Clean and Disordered Systems: An Overview

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work we provide an overview of our recent results about the quench dynamics of one-dimensional many-body quantum systems described by spin-1/2 models. To illustrate those general results, here we employ a particular and experimentally accessible initial state, namely the Néel state. Both cases are considered: clean chains without any disorder and disordered systems with static random on-site magnetic fields. The quantity used for the analysis is the probability for finding the initial state later in time, the so-called survival probability. At short times, the survival probability may decay faster than exponentially, Gaussian behaviors and even the limit established by the energy-time uncertainty relation are displayed. The dynamics at long times slows down significantly and shows a powerlaw behavior. For both scenarios, we provide analytical expressions that agree very well with our numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.J. Torres-Herrera, L.F. Santos, Phys. Rev. B 92, 014208 (2015)

    Article  ADS  Google Scholar 

  2. E.J. Torres-Herrera, L.F. Santos, Phys. Rev. A 043620, 89 (2014)

    Google Scholar 

  3. E.J. Torres-Herrera, M. Vyas, L.F. Santos, J. New, Phys. 063010, 16 (2014)

    Google Scholar 

  4. E.J. Torres-Herrera, L.F. Santos, Phys. Rev. A 033623, 90 (2014)

    Google Scholar 

  5. E.J. Torres-Herrera, L.F. Santos, Phys. Rev. E 062110, 89 (2014)

    Google Scholar 

  6. E.J. Torres-Herrera, L.F. Santos, ed. by P. Danielewicz, V. Zelevinsky. in AIP Proceedings, (APS, East Lansing Michigan , 2014)

  7. E.J. Torres-Herrera, D. Kollmar, L.F. Santos, Relaxation and thermalization of isolated many-body quantum systems. arXiv:1403.6481 (2015)

  8. E.J. Torres-Herrera, L.F. Santos, Phys. Rev. E 042121, 88 (2013)

    Google Scholar 

  9. T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 140601, 113 (2014)

    Google Scholar 

  10. P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. Lett. 250506, 99 (2007)

    Google Scholar 

  11. G. Kaur, A. Ajoy, P. Cappellaro, J. New, Phys. 15, 093035 (2013)

    Google Scholar 

  12. P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature. 511, 202 (2014)

    Article  ADS  Google Scholar 

  13. P. Richerme, Z.X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Nature. 511(7508), 198 (2014)

    Article  ADS  Google Scholar 

  14. S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, I. Bloch, Science. 319, 295 (2008)

    Article  ADS  Google Scholar 

  15. S. Trotzky, Y.A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Nat. Phys. 8, 325 (2012)

    Article  Google Scholar 

  16. T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schausz, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, S. Kuhr, Nat. Phys. 9, 235 (2013)

    Article  Google Scholar 

  17. L.A. Khalfin, Sov. Phys. JETP. 6, 1053 (1958)

    ADS  Google Scholar 

  18. L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  19. A. del Campo, Phys. Rev. A. 012113, 84 (2011)

    Google Scholar 

  20. A. del Campo, arXiv:1504.01620

  21. J.G. Muga, A. Ruschhaupt, A. del Campo. Time in Quantum Mechanics, vol. 2. (Springer, London, 2009)

    Book  MATH  Google Scholar 

  22. C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 163601, 96 (2006)

    Google Scholar 

  23. F.M. Izrailev, A. Castaṅeda-Mendoza, Phys. Lett. A 350, 355 (2006)

    Article  ADS  Google Scholar 

  24. H.A. Bethe, Z. Phys. 71, 205 (1931)

    Article  ADS  Google Scholar 

  25. Y. Avishai, J. Richert, R. Berkovitz, Phys. Rev. B 66(052416), 1 (2002)

    Google Scholar 

  26. L.F. Santos, G. Rigolin, C.O. Escobar, Phys. Rev. A 042304, 69 (2004)

    MathSciNet  Google Scholar 

  27. F. Dukesz, M. Zilbergerts, L.F. Santos, J. New. Phys. 11 (043026 (1), 2009)

  28. L.F. Santos, J. Phys. A. 37, 4723 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Gubin, L.F. Santos, Am. J. Phys. 80, 246 (2012)

    Article  ADS  Google Scholar 

  30. L.F. Santos, Rev. Phys. E 031125, 78 (2008)

    Google Scholar 

  31. L.F. Santos, J. Math. Phys. 50 (095211 (1, 2009)

  32. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. V.K.B. Kota, Phys. Rep. 347, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. L.F. Santos, F. Borgonovi, F.M. Izrailev, Phys. Rev. E 036209, 85 (2012)

    Google Scholar 

  35. P.R. Zangara, A.D. Dente, E.J. Torres-Herrera, H.M. Pastawski, A. Iucci, L.F. Santos, Phys. Rev. E 032913, 88 (2013)

    Google Scholar 

  36. V. Zelevinsky, B.A. Brown, N. Frazier, M. Horoi, Phys. Rep. 276, 85 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. L. Mandelstam, I. Tamm, J. Phys. USSR. 9, 249 (1945)

    MathSciNet  Google Scholar 

  38. I. Ersak, Sov. J. Nucl. Phys. 9, 263 (1969)

  39. G.N. Fleming, Il Nuovo Cimento. 16, 232 (1973)

    Article  MathSciNet  Google Scholar 

  40. K. Bhattacharyya, J. Phys. A. 16, 2993 (1983)

    Article  ADS  Google Scholar 

  41. E.A. Gislason, N.H. Sabelli, J.W. Wood, Phys. Rev. A 31, 2078 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  42. L. Vaidman, Am. J. Phys. 60, 182 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Ufink, Am. J. Phys. 61, 935 (1993)

    Article  ADS  Google Scholar 

  44. P. Pfeifer, Rev, Phys. Lett. 70, 3365 (1993)

    Article  Google Scholar 

  45. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. A 052109, 67 (2003)

    Google Scholar 

  46. T.B. Boykin, N. Kharche, G. Klimeck, Eur. J. Phys. 28, 673 (2007)

    Article  Google Scholar 

  47. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  48. B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  49. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  50. F. Izrailev, A. Krokhin, N. Makarov, Phys. Rep. 512(3), 125 (2012). Anomalous localization in low-dimensional systems with correlated disorder

    Article  ADS  MathSciNet  Google Scholar 

  51. W. Morong, B. DeMarco, arXiv:1505.01836

  52. L. Fleishman, P.W. Anderson, Phys. Rev. B 21, 2366 (1980)

    Article  ADS  Google Scholar 

  53. I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 206603, 95 (2005)

    Google Scholar 

  54. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    Article  ADS  Google Scholar 

  55. J.Z. Imbrie, On many-body localization for quantum spin chains. arXiv:1403.7837

  56. B. Bauer, T. Schweigler, T. Langen, J. Schmiedmayer, Does an isolated quantum system relax? arXiv:1504.04288

  57. B. Huckestein, R. Klesse, Phys. Rev. B 55, R7303 (1997)

    Article  ADS  Google Scholar 

  58. R. Ketzmerick, G. Petschel, T. Geisel, Phys. Rev. Lett. 69, 695 (1992)

    Article  ADS  Google Scholar 

  59. B. Huckestein, L. Schweitzer, Phys. Rev. Lett. 72, 713 (1994)

    Article  ADS  Google Scholar 

  60. E. Cuevas, V.E. Kravtsov, Phys. Rev. B 235119, 76 (2007)

    Google Scholar 

  61. B. Huckestein, R. Klesse, Phys. Rev. B 59, 9714 (1999)

    Article  ADS  Google Scholar 

  62. V.E. Kravtsov, A. Ossipov, O.M. Yevtushenko, J. Phys. A Math. Theor. 305003, 44 (2011)

    Google Scholar 

  63. J.T. Chalker, G.J. Daniell, Phys. Rev. Lett. 61, 593 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was motivated by a presentation given by one of the authors at the Workshop: Quantum Information and Thermodynamics held in São Carlos in February, 2015. This work was supported by the NSF grant No. DMR-1147430. E.J.T.H. acknowledges support from CONACyT, Mexico. LFS thanks the ITAMP hospitality, where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea F. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Herrera, E.J., Távora, M. & Santos, L.F. Survival Probability of the Néel State in Clean and Disordered Systems: An Overview. Braz J Phys 46, 239–247 (2016). https://doi.org/10.1007/s13538-015-0366-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0366-3

Keywords

Navigation