Skip to main content
Log in

Hydrodynamic Simulations of the Combustion of Dense Hadronic Matter into Quark Matter

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We perform special-relativistic one-dimensional hydrodynamic simulations to study the combustion of hadronic matter into quark matter in neutron star conditions. For the equation of state, we use a relativistic mean-field Walecka model for hadronic matter and the MIT bag model for quark matter. We study the growth of a small core of quark matter surrounded by hadronic matter at constant density, where both regions are initially at rest. We show that a strong detonation front propagates into hadronic matter converting it into quark matter. We find that the timescale for the conversion of a compact star is around tens of microseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buballa, et al., J. Phys. 123001, G41 (2014)

  2. M.L. Olesen, J. Madsen, Phys. Rev. D49, 2698 (1994)

    ADS  Google Scholar 

  3. G. Lugones, O. Benvenuto, Phys. Rev. D58, 083001 (1998)

    ADS  Google Scholar 

  4. K. Iida, K. Sato, Phys. Rev. C58, 2538 (1998)

    ADS  Google Scholar 

  5. O.G. Benvenuto, G. Lugones, MNRAS. 304, L25 (1999)

    Article  ADS  Google Scholar 

  6. I. Bombaci, I. Parenti, I. Vidaña, Astrophys. J. 614, 314 (2004)

    Article  ADS  Google Scholar 

  7. G. Lugones, I. Bombaci, Phys. Rev. D72, 065021 (2005)

    ADS  Google Scholar 

  8. I. Bombaci, G. Lugones, I. Vidaña, Astron. Astrophys. 462, 1017 (2007)

    Article  ADS  Google Scholar 

  9. I. Bombaci, D. Logoteta, P.K. Panda, C. Providencia, I. Vidaña, Phys. Lett. B680, 448 (2009)

    Article  ADS  Google Scholar 

  10. G. Lugones, A.G. Grunfeld, N.N. Scoccola, C. Villavicencio, Phys. Rev. D80 (2009)

  11. G. Lugones, T.A.S. Do Carmo, A.G. Grunfeld, N.N. Scoccola, Phys. Rev. D81, 85012 (2010)

    ADS  Google Scholar 

  12. G. Lugones, A.G. Grunfeld. Phys. Rev. D84, 85003 (2011)

    ADS  Google Scholar 

  13. T.A.S. Do Carmo, G. Lugones, Physica. A 392, 6536 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. T.A.S. Do Carmo, G. Lugones, A.G. Grunfeld, J. Phys. G: Nucl. Part. Phys. 40, 035201 (2013)

    Article  ADS  Google Scholar 

  15. J.E. Horvath, O.G. Benvenuto, Phys. Lett. B213, 516 (1988)

    Article  ADS  Google Scholar 

  16. O.G. Benvenuto, J.E. Horvath, Phys. Rev. Lett. 63, 716 (1989)

    Article  ADS  Google Scholar 

  17. G. Lugones, O.G. Benvenuto, H. Vucetich, Phys. Rev. D50, 6100 (1994)

    ADS  Google Scholar 

  18. G. Lugones, C.R. Ghezzi, E.M. De Gouveia Dal Pino, J.E. Horvath, Astrophys. J. 581, L101 (2002)

    Article  ADS  Google Scholar 

  19. I. Tokareva, A. Nusser, V. Gurovich, V. Folomeev, Int. J. Mod. Phys. D14, 33 (2005)

    Article  ADS  Google Scholar 

  20. I. Tokareva, A. Nusser, Phys. Lett. B639, 232 (2006)

    Article  ADS  Google Scholar 

  21. P. Keranen, R. Ouyed, P. Jaikumar, Astrophys. J. 618, 485 (2005)

    Article  ADS  Google Scholar 

  22. B. Niebergal, R. Ouyed, P. Jaikumar, Phys. Rev. C82, 062801 (2010)

    ADS  Google Scholar 

  23. M. Herzog, F.K. Röpke, Phys. Rev. D84, 083002 (2011)

    ADS  Google Scholar 

  24. T. Fischer, et al., Astrophys. J. Supp. 194, 39 (2011)

    Article  ADS  Google Scholar 

  25. G. Pagliara, M. Herzog, F.K. Röpke, Phys. Rev. D87, 103007 (2013)

    ADS  Google Scholar 

  26. J. Smoller, B. Temple, Commun. Math. Phys. 156, 67 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields Vol. 2 (Butterworth-Heinemann, 1975)

  28. J.A. Font, T. Goodale, S. Iyer, M. Miller, L. Rezzolla, E. Seidel, N. Stergioulas, W.-M. Suen, M. Tobias, Phys. Rev. D65, 084024 (2002)

    MathSciNet  ADS  Google Scholar 

  29. J.M. Martí, E. Müller, Living Rev. Relativ. 6, 7 (2003)

    Article  ADS  Google Scholar 

  30. J.A. Font, M. Miller, W.M. Suen, M. Tobias, Phys. Rev. D61, 044011 (2000)

    MathSciNet  ADS  Google Scholar 

  31. F. Banyuls, J.A. Font, J.M. Ibañez, J.M. Marti, J.A. Miralles, Astrophys. J. 476, 221 (1997)

    Article  ADS  Google Scholar 

  32. O. Dönmez, Appl. Math. Comput. 181, 256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. S.K. Godunov, Math. Sbornik. 47, 271 (1959)

    MathSciNet  Google Scholar 

  34. P.L. Roe, J. Pike. Computing methods in applied science and engineering(INRIA North-Holland, (Amsterdam, 1984)

  35. E.F Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd edn. (Springer-Verlag, Berlin, 2009)

    Book  Google Scholar 

  36. J.D. Walecka, Ann. Phys. 83, 491 (1974)

    Article  ADS  Google Scholar 

  37. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  38. J. Boguta, R.A. Bodmer, Nucl. Phys. A292, 413 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  39. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)

    Article  ADS  Google Scholar 

  40. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature. 467, 1081 (2010)

    Article  ADS  Google Scholar 

  41. J. Antoniadis, et al., Science. 340, 6131 (2013)

    Article  ADS  Google Scholar 

  42. E. Farhi, R.L. Jaffe, Phys. Rev. D30, 2379 (1984)

    ADS  Google Scholar 

  43. J.D. Anand, A. Goyal, V.K. Gupta, S. Singh, Astrophys. J. 481, 954 (1997)

    Article  ADS  Google Scholar 

  44. L. Xiang-Jun, L. Zhi-Quan, L. Jing-Jing, L. Hong-Lin, Commun. Theor. Phys. 49, 1643 (2008)

    Article  ADS  Google Scholar 

  45. L. Xiang-Jun, L. Men-Quan, L. Jing-Jing, L. Zhi-Quan, Chin. Phys. B17, 585 (2008)

    Article  ADS  Google Scholar 

  46. Zigao Dai, Q. Peng, T. Lu, Phys. Lett. B319, 199 (1993)

    ADS  Google Scholar 

  47. Z. Dai, Q. Peng, T. Lu, Astrophys. J. 440, 815 (1995)

    Article  ADS  Google Scholar 

  48. Z. Dai, X. Wu, T. Lu, Astrophys. Space Sci. 232, 131 (1995)

    Article  ADS  Google Scholar 

  49. L.D. Landau, E.M. Lifshitz, Vol. 6. Fluid Mechanics (Butterworth-Heinemann, 1987)

Download references

Acknowledgments

UFABC and CAPES are acknowledged for support. G.L. acknowledges the financial support of FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Lugones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albarracin Manrique, M.A., Lugones, G. Hydrodynamic Simulations of the Combustion of Dense Hadronic Matter into Quark Matter. Braz J Phys 45, 457–466 (2015). https://doi.org/10.1007/s13538-015-0332-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0332-0

Keywords

Navigation