Skip to main content
Log in

Computational analysis of electrode structure and configuration for efficient and localized neural stimulation

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Neuromodulation technique using electric stimulation is widely applied in neural prosthesis, therapy, and neuroscience research. Various stimulation techniques have been developed to enhance stimulation efficiency and to precisely target the specific area of the brain which involves optimizing the geometry and the configuration of the electrode, stimulation pulse type and shapes, and electrode materials. Although the effects of electrode shape, size, and configuration on the performance of neural stimulation have individually been characterized, to date, there is no integrative investigation of how this factor affects neural stimulation. In this study, we computationally modeled the various types of electrodes with varying shapes, sizes, and configurations and simulated the electric field to calculate the activation function. The electrode geometry is then integratively assessed in terms of stimulation efficiency and stimulation focality. We found that stimulation efficiency is enhanced by making the electrode sharper and smaller. A center-to-vertex distance exceeding 100 µm shows enhanced stimulation efficiency in the bipolar configuration. Additionally, the separation distance of less than 1 mm between the reference and stimulation electrodes exhibits higher stimulation efficiency compared to the monopolar configuration. The region of neurons to be stimulated can also be modified. We found that sharper electrodes can locally activate the neuron. In most cases, except for the rectangular electrode shape with a center-to-vertex distance smaller than 100 µm, the bipolar electrode configuration can locally stimulate neurons as opposed to the monopolar configuration. These findings shed light on the optimal selection of neural electrodes depending on the target applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lewis PM, Thomson RH, Rosenfeld JV, Fitzgerald PB. Brain neuromodulation techniques: a review. Neuroscientist. 2016;22(4):406–21. https://doi.org/10.1177/1073858416646707.

    Article  CAS  PubMed  Google Scholar 

  2. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99. https://doi.org/10.1016/j.neuron.2007.06.026.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  3. Park Y, Park S-Y, Eom K. Current review of optical neural interfaces for clinical applications. Micromachines. 2021;12(8):925. https://doi.org/10.3390/mi12080925.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17(2):75–87. https://doi.org/10.1038/s41582-020-00426-z.

    Article  PubMed  Google Scholar 

  5. Zhang S, Qin Y, Wang J, Yu Y, Wu L, Zhang T. Noninvasive electrical stimulation neuromodulation and digital brain technology: a review. Biomedicines. 2023;11(6):1513. https://doi.org/10.3390/biomedicines11061513.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jog MA, Anderson C, Kubicki A, Boucher M, Leaver A, Hellemann G, et al. Transcranial direct current stimulation (tDCS) in depression induces structural plasticity. Sci Rep. 2023;13(1):2841. https://doi.org/10.1038/s41598-023-29792-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics. 2016;13(2):295–310. https://doi.org/10.1007/s13311-015-0415-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. An SK, Park S-I, Jun SB, Lee CJ, Byun KM, Sung JH, et al. Design for a simplified cochlear implant system. IEEE Trans Biomed Eng. 2007;54(6):973–82. https://doi.org/10.1109/TBME.2007.895372.

    Article  PubMed  Google Scholar 

  9. Paulus W. Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17. https://doi.org/10.1080/09602011.2011.557292.

    Article  PubMed  Google Scholar 

  10. Sakmann B, Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 1984;46(1):455–72. https://doi.org/10.1146/annurev.ph.46.030184.002323.

    Article  CAS  PubMed  Google Scholar 

  11. Golestanirad L, Elahi B, Molina Arribere A, Mosig J, Pollo C, Graham S. Analysis of fractal electrodes for efficient neural stimulation. Front Neuroeng. 2013. https://doi.org/10.3389/fneng.2013.00003.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grill WM, Wei XF (2009) High efficiency electrodes for deep brain stimulation. In: 2009 annual international conference of the IEEE engineering in medicine and biology society: IEEE; pp 3298–301

  13. Gomez-Tames J, Kutsuna T, Tamura M, Muragaki Y, Hirata A. Intraoperative direct subcortical stimulation: comparison of monopolar and bipolar stimulation. Phys Med Biol. 2018;63(22):225013. https://doi.org/10.1088/1361-6560/aaea06.

    Article  CAS  PubMed  Google Scholar 

  14. Shim S, Park JH, Kim SJ. Virtual electrodes generated by focused penta-polar current stimulation for neuromodulation. Micro Nano Lett. 2020;15(6):374–7. https://doi.org/10.1049/mnl.2019.0348.

    Article  CAS  Google Scholar 

  15. Ghazavi A, Westwick D, Xu F, Wijdenes P, Syed N, Dalton C. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape. J Neurosci Methods. 2015;248:51–8. https://doi.org/10.1016/j.jneumeth.2015.03.024.

    Article  PubMed  Google Scholar 

  16. Spencer TC, Fallon JB, Shivdasani MN. Creating virtual electrodes with 2D current steering. J Neural Eng. 2018;15(3):035002. https://doi.org/10.1088/1741-2552/aab1b8.

    Article  PubMed  Google Scholar 

  17. Lee SW, Thyagarajan K, Fried SI. Micro-coil design influences the spatial extent of responses to intracortical magnetic stimulation. IEEE Trans Biomed Eng. 2018;66(6):1680–94. https://doi.org/10.1109/TBME.2018.2877713.

    Article  PubMed Central  Google Scholar 

  18. Rattay F. Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng. 1989;36(7):676–82. https://doi.org/10.1109/10.32099.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng DK. Field and wave electromagnetics, 2/E. International Edition. Harlow: Pearson custom library Pearson Education; 2013.

    Google Scholar 

  20. Coffey RJ. Deep brain stimulation devices: a brief technical history and review. Artif Organs. 2009;33(3):208–20. https://doi.org/10.1111/j.1525-1594.2008.00620.x.

    Article  PubMed  Google Scholar 

  21. Mailis-Gagnon A, Furlan MDPAD, Sandoval JA, Taylor RS. Spinal cord stimulation for chronic pain. Cochrane Database Syst Rev. 2004. https://doi.org/10.1002/14651858.CD003783.pub2.

    Article  PubMed  Google Scholar 

  22. Zheng XS, Tan C, Castagnola E, Cui XT. Electrode materials for chronic electrical microstimulation. Adv Healthcare Mater. 2021;10(12):2100119. https://doi.org/10.1002/adhm.202100119.

    Article  CAS  Google Scholar 

  23. Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;10:974–7.

    Article  Google Scholar 

  24. Kroll MW. A minimal model of the monophasic defibrillation pulse. Pacing Clin Electrophysiol. 1993;16(4):769–77. https://doi.org/10.1111/j.1540-8159.1993.tb01657.x.

    Article  CAS  PubMed  Google Scholar 

  25. Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9(1):483.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khatoun A, Breukers J, Op de Beeck S, Nica IG, Aerts J-M, Seynaeve L, et al. Using high-amplitude and focused transcranial alternating current stimulation to entrain physiological tremor. Sci Rep. 2018;8(1):4927.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Grill WM. Model-based analysis and design of waveforms for efficient neural stimulation. Prog Brain Res. 2015;222:147–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1C1C1010505, RS-2023-00217893), and by BK21PLUS, Creative Human Resource Education and Research Programs for ICT Convergence in the 4th Industrial Revolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungsik Eom.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Moon, J., Park, Y.H. et al. Computational analysis of electrode structure and configuration for efficient and localized neural stimulation. Biomed. Eng. Lett. (2024). https://doi.org/10.1007/s13534-024-00364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13534-024-00364-5

Keywords

Navigation