Skip to main content
Log in

Robotic-assisted unicompartmental knee arthroplasty: historical perspectives and current innovations

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Robotic assisted unicompartmental knee arthroplasty (RAUKA) has emerged as a successful approach for optimizing implant positioning accuracy, minimizing soft tissue injury, and improving patient-reported outcomes. The application of RAUKA is expected to increase because of its advantages over conventional unicompartmental knee arthroplasty. This review article provides an overview of RAUKA, encompassing the historical development of the procedure, the features of the robotic arm and navigation systems, and the characteristics of contemporary RAUKA. The article also includes a comparison between conventional unicompartmental arthroplasty and RAUKA, as well as a discussion of current challenges and future advancements in the field of RAUKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baker P, Jameson S, Critchley R, Reed M, Gregg P, Deehan D. Center and surgeon volume influence the revision rate following unicondylar knee replacement: an analysis of 23,400 medial cemented unicondylar knee replacements. J Bone Jt Surg Am. 2013;95(8):702–9. https://doi.org/10.2106/jbjs.L.00520.

    Article  Google Scholar 

  2. Berger RA, Meneghini RM, Jacobs JJ, Sheinkop MB, Della Valle CJ, Rosenberg AG, et al. Results of unicompartmental knee arthroplasty at a minimum of ten years of follow-up. J Bone Jt Surg Am. 2005;87(5):999–1006. https://doi.org/10.2106/jbjs.C.00568.

    Article  Google Scholar 

  3. Jennings JM, Kleeman-Forsthuber LT, Bolognesi MP. Medial Unicompartmental Arthroplasty of the Knee. J Am Acad Orthop Surg. 2019;27(5):166–76. https://doi.org/10.5435/jaaos-d-17-00690.

    Article  Google Scholar 

  4. Liu P, Lu FF, Liu GJ, Mu XH, Sun YQ, Zhang QD, et al. Robotic-assisted unicompartmental knee arthroplasty: a review. Arthroplasty. 2021;3(1):15. https://doi.org/10.1186/s42836-021-00071-x.

    Article  Google Scholar 

  5. Niinimäki T, Eskelinen A, Mäkelä K, Ohtonen P, Puhto AP, Remes V. Unicompartmental knee arthroplasty survivorship is lower than TKA survivorship: a 27-year Finnish registry study. Clin Orthop Relat Res. 2014;472(5):1496–501. https://doi.org/10.1007/s11999-013-3347-2.

    Article  Google Scholar 

  6. Lyons MC, MacDonald SJ, Somerville LE, Naudie DD, McCalden RW. Unicompartmental versus total knee arthroplasty database analysis: is there a winner? Clin Orthop Relat Res. 2012;470(1):84–90. https://doi.org/10.1007/s11999-011-2144-z.

    Article  Google Scholar 

  7. Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2003;11(1):40–5. https://doi.org/10.1007/s00167-002-0333-8.

    Article  Google Scholar 

  8. Keene G, Simpson D, Kalairajah Y. Limb alignment in computer-assisted minimally-invasive unicompartmental knee replacement. J Bone Joint Surg Br. 2006;88(1):44–8. https://doi.org/10.1302/0301-620X.88B1.16266.

    Article  Google Scholar 

  9. Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1232–40. https://doi.org/10.1007/s00167-018-5081-5.

    Article  Google Scholar 

  10. Liddle AD, Pandit H, Judge A, Murray DW. Effect of surgical caseload on revision rate following total and unicompartmental knee replacement. J Bone Joint Surg Am. 2016;98(1):1–8. https://doi.org/10.2106/JBJS.N.00487.

    Article  Google Scholar 

  11. Negrín R, Duboy J, Iñiguez M, Reyes NO, Barahona M, Ferrer G, et al. Robotic-assisted vs conventional surgery in medial unicompartmental knee arthroplasty: a clinical and radiological study. Knee Surg Relat Res. 2021;33(1):5. https://doi.org/10.1186/s43019-021-00087-2.

    Article  Google Scholar 

  12. Zhang J, Ng N, Scott CEH, Blyth MJG, Haddad FS, Macpherson GJ, et al. Robotic arm-assisted versus manual unicompartmental knee arthroplasty : a systematic review and meta-analysis of the MAKO robotic system. Bone Jt J. 2022;104-b(5):541–8. https://doi.org/10.1302/0301-620x.104b5.Bjj-2021-1506.R1.

    Article  Google Scholar 

  13. Chen X, Deng S, Sun ML, He R. Robotic arm-assisted arthroplasty: the latest developments. Chin J Traumatol. 2022;25(3):125–31. https://doi.org/10.1016/j.cjtee.2021.09.001.

    Article  Google Scholar 

  14. Kozinn SC, Scott R. Unicondylar knee arthroplasty. J Bone Jt Surg Am. 1989;71(1):145–50.

    Article  Google Scholar 

  15. Hiranaka T, Furuhashi R, Takashiba K, Kodama T, Michishita K, Inui H, et al. Agreement and accuracy of radiographic assessment using a decision aid for medial Oxford partial knee replacement: multicentre study. Knee Surg Relat Res. 2022;34(1):13. https://doi.org/10.1186/s43019-022-00140-8.

    Article  Google Scholar 

  16. Gowd AK, Plate JF, Lichtig A, Gencer A, Yanmis O, D’Agostino R, et al. Favourable mid-term outcomes following unicompartmental knee arthroplasty with wider patient selection: A single-centre experience. J Isakos. 2023. https://doi.org/10.1016/j.jisako.2023.03.002.

    Article  Google Scholar 

  17. Bayoumi T, Kleeblad LJ, Borus TA, Coon TM, Dounchis J, Nguyen JT, et al. Ten-year survivorship and patient satisfaction following robotic-arm-assisted medial unicompartmental knee arthroplasty: a prospective multicenter study. J Bone Jt Surg Am. 2023. https://doi.org/10.2106/jbjs.22.01104.

    Article  Google Scholar 

  18. Tolk JJ, Janssen RPA, Haanstra TM, Bierma-Zeinstra SMA, Reijman M. The EKSPECT study: the influence of Expectation modification in Knee arthroplasty on Satisfaction of patients: study protocol for a randomized controlled Trial. Trials. 2018;19(1):437. https://doi.org/10.1186/s13063-018-2821-2.

    Article  Google Scholar 

  19. Kim KT. Unicompartmental knee Arthroplasty. Knee Surg Relat Res. 2018;30(1):1–2. https://doi.org/10.5792/ksrr.18.014.

    Article  Google Scholar 

  20. Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS. The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Jt J. 2018;100(8):1033–42. https://doi.org/10.1302/0301-620x.100b8.Bjj-2018-0040.R1.

    Article  Google Scholar 

  21. Tay ML, Carter M, Bolam SM, Zeng N, Young SW. Robotic-arm assisted unicompartmental knee arthroplasty system has a learning curve of 11 cases and increased operating time. Knee Surg Sports Traumatol Arthrosc. 2023;31(3):793–802. https://doi.org/10.1007/s00167-021-06814-2.

    Article  Google Scholar 

  22. Emara AK, Zhou G, Klika AK, Koroukian SM, Schiltz NK, Krebs VE, et al. Robotic-arm-assisted knee arthroplasty associated with favorable in-hospital metrics and exponentially rising adoption compared with manual knee arthroplasty. J Am Acad Orthop Surg. 2021;29(24):e1328–42. https://doi.org/10.5435/jaaos-d-21-00146.

    Article  Google Scholar 

  23. Lonner JH, Moretti VM. The evolution of image-free robotic assistance in unicompartmental knee arthroplasty. Am J Orthop. 2016;45(4):249–54.

    Google Scholar 

  24. McKeever DC. The choice of prosthetic materials and evaluation of results. Clin Orthop. 1955;6:17–21.

    Google Scholar 

  25. Marmor L. The modular knee. Clin Orthop Relat Res. 1973;94:242–8. https://doi.org/10.1097/00003086-197307000-00029.

    Article  Google Scholar 

  26. Marmor L. Unicompartmental knee arthroplasty. ten- to 13-year follow-up study. Clin Orthop Relat Res. 1988;226:14–20.

    Article  Google Scholar 

  27. Insall J, Aglietti P. A five to seven-year follow-up of unicondylar arthroplasty. J Bone Jt Surg Am. 1980;62(8):1329–37.

    Article  Google Scholar 

  28. Laskin RS. Unicompartmental tibiofemoral resurfacing arthroplasty. J Bone Joint Surg Am. 1978;60(2):182–5.

    Article  MathSciNet  Google Scholar 

  29. Goodfellow J, O’Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br. 1978;60-b(3):358–69. https://doi.org/10.1302/0301-620x.60b3.581081.

    Article  Google Scholar 

  30. Johal S, Nakano N, Baxter M, Hujazi I, Pandit H, Khanduja V. Unicompartmental knee arthroplasty: the past, current controversies, and future perspectives. J Knee Surg. 2018;31(10):992–8. https://doi.org/10.1055/s-0038-1625961.

    Article  Google Scholar 

  31. Murray DW, Goodfellow JW, O’Connor JJ. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br. 1998;80(6):983–9. https://doi.org/10.1302/0301-620x.80b6.8177.

    Article  Google Scholar 

  32. Argenson JN, Chevrol-Benkeddache Y, Aubaniac JM. Modern unicompartmental knee arthroplasty with cement: a three to ten-year follow-up study. J Bone Jt Surg Am. 2002;84(12):2235–9.

    Article  Google Scholar 

  33. Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand. 2000;71(3):262–7. https://doi.org/10.1080/000164700317411852.

    Article  Google Scholar 

  34. van der List JP, McDonald LS, Pearle AD. Systematic review of medial versus lateral survivorship in unicompartmental knee arthroplasty. Knee. 2015;22(6):454–60. https://doi.org/10.1016/j.knee.2015.09.011.

    Article  Google Scholar 

  35. Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. 1998;354:82–91. https://doi.org/10.1097/00003086-199809000-00011.

    Article  Google Scholar 

  36. Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br. 2006;88(2):188–97. https://doi.org/10.1302/0301-620x.88b2.17220.

    Article  Google Scholar 

  37. Gioutsos K, Kocher GJ, Schmid RA. Robotics in pulmonology and thoracic surgery: what, why and when? Panminerva Med. 2016;58(4):318–28.

    Google Scholar 

  38. Wedmid A, Llukani E, Lee DI. Future perspectives in robotic surgery. BJU Int. 2011;108(6 Pt 2):1028–36. https://doi.org/10.1111/j.1464-410X.2011.10458.x.

    Article  Google Scholar 

  39. Hubens G, Coveliers H, Balliu L, Ruppert M, Vaneerdeweg W. A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surg Endosc. 2003;17(10):1595–9. https://doi.org/10.1007/s00464-002-9248-1.

    Article  Google Scholar 

  40. Sousa PL, Sculco PK, Mayman DJ, Jerabek SA, Ast MP, Chalmers BP. Robots in the operating room during hip and knee arthroplasty. Curr Rev Musculoskelet Med. 2020;13(3):309–17. https://doi.org/10.1007/s12178-020-09625-z.

    Article  Google Scholar 

  41. Netravali NA, Shen F, Park Y, Bargar WL. A perspective on robotic assistance for knee arthroplasty. Adv Orthop. 2013;2013: 970703. https://doi.org/10.1155/2013/970703.

    Article  Google Scholar 

  42. Konyves A, Willis-Owen CA, Spriggins AJ. The long-term benefit of computer-assisted surgical navigation in unicompartmental knee arthroplasty. J Orthop Surg Res. 2010;5:94. https://doi.org/10.1186/1749-799x-5-94.

    Article  Google Scholar 

  43. Figueroa F, Parker D, Fritsch B, Oussedik S. New and evolving technologies for knee arthroplasty—computer navigation and robotics: state of the art. J of ISAKOS. 2018;3(1):46–54.

    Article  Google Scholar 

  44. Chen AF, Kazarian GS, Jessop GW, Makhdom A. Robotic technology in orthopaedic surgery. J Bone Joint Surg Am. 2018;100(22):1984–92. https://doi.org/10.2106/jbjs.17.01397.

    Article  Google Scholar 

  45. Banks SA. Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(2 Suppl):23–7.

    Google Scholar 

  46. St Mart JP, Goh EL. The current state of robotics in total knee arthroplasty. EFORT Open Rev. 2021;6(4):270–9. https://doi.org/10.1302/2058-5241.6.200052.

    Article  Google Scholar 

  47. Stulberg BN, Zadzilka JD. Active robotic technologies for total knee arthroplasty. Arch Orthop Trauma Surg. 2021;141(12):2069–75. https://doi.org/10.1007/s00402-021-04044-2.

    Article  Google Scholar 

  48. Jones CW, Jerabek SA. Current role of computer navigation in total knee arthroplasty. J Arthroplasty. 2018;33(7):1989–93. https://doi.org/10.1016/j.arth.2018.01.027.

    Article  Google Scholar 

  49. Siston RA, Giori NJ, Goodman SB, Delp SL. Surgical navigation for total knee arthroplasty: a perspective. J Biomech. 2007;40(4):728–35. https://doi.org/10.1016/j.jbiomech.2007.01.006.

    Article  Google Scholar 

  50. Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br. 2004;86(5):682–7.

    Article  Google Scholar 

  51. Keyes BJ, Markel DC, Meneghini RM. Evaluation of limb alignment, component positioning, and function in primary total knee arthroplasty using a pinless navigation technique compared with conventional methods. J Knee Surg. 2013;26(2):127–32. https://doi.org/10.1055/s-0032-1319788.

    Article  Google Scholar 

  52. Nair R, Tripathy G, Deysine GR. Computer navigation systems in unicompartmental knee arthroplasty: a systematic review. Am J Orthop (Belle Mead NJ). 2014;43(6):256–61.

    Google Scholar 

  53. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, et al. Robotic systems in orthopaedic surgery. J Bone Jt Surg Br. 2011;93(10):1296–9. https://doi.org/10.1302/0301-620x.93b10.27418.

    Article  Google Scholar 

  54. Murphy S, Gobezie R. Image-guided surgical navigation: basic principles and applications to reconstructive surgery. Orthop J Harvard Med School. 2002;4:68–70.

    Google Scholar 

  55. Shatrov J, Parker D. Computer and robotic - assisted total knee arthroplasty: a review of outcomes. J Exp Orthop. 2020;7(1):70. https://doi.org/10.1186/s40634-020-00278-y.

    Article  Google Scholar 

  56. Liu Y, Yao D, Zhai Z, Wang H, Chen J, Wu C, et al. Fusion of multimodality image and point cloud for spatial surface registration for knee arthroplasty. Int J Med Robot. 2022;18(5): e2426. https://doi.org/10.1002/rcs.2426.

    Article  Google Scholar 

  57. Corbett J, Khan WS. Advances in navigation and robot-assisted surgery. Orthop Upper Lower Limb. 2020;2020:553–63.

    Article  Google Scholar 

  58. Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, Welch JN, et al. Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg. 2000;5(2):98–107. https://doi.org/10.1002/1097-0150(2000)5:2.

    Article  Google Scholar 

  59. Yau WP, Leung A, Chiu KY, Tang WM, Ng TP. Intraobserver errors in obtaining visually selected anatomic landmarks during registration process in nonimage-based navigation-assisted total knee arthroplasty: a cadaveric experiment. J Arthroplasty. 2005;20(5):591–601. https://doi.org/10.1016/j.arth.2005.02.011.

    Article  Google Scholar 

  60. Su E. Handheld navigation in total knee arthroplasty. Seminars Arthroplas. 2015;26(2):47–50. https://doi.org/10.1053/j.sart.2015.08.003.

    Article  Google Scholar 

  61. Nam D, Weeks KD, Reinhardt KR, Nawabi DH, Cross MB, Mayman DJ. Accelerometer-based, portable navigation vs imageless, large-console computer-assisted navigation in total knee arthroplasty: a comparison of radiographic results. J Arthroplasty. 2013;28(2):255–61. https://doi.org/10.1016/j.arth.2012.04.023.

    Article  Google Scholar 

  62. Rattanaprichavej P, Laoruengthana A. Accelerometer-based navigation versus conventional total knee arthroplasty for posttraumatic knee osteoarthritis. Clin Orthop Surg. 2022;14(4):522–9. https://doi.org/10.4055/cios21147.

    Article  Google Scholar 

  63. Shah SM. After 25 years of computer-navigated total knee arthroplasty, where do we stand today? Arthroplasty. 2021;3(1):41. https://doi.org/10.1186/s42836-021-00100-9.

    Article  Google Scholar 

  64. Jaramaz B, Nikou C. Precision freehand sculpting for unicondylar knee replacement: design and experimental validation. Biomed Tech (Berl). 2012;57(4):293–9. https://doi.org/10.1515/bmt-2011-0098.

    Article  Google Scholar 

  65. Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res. 2015;473(1):206–12. https://doi.org/10.1007/s11999-014-3764-x.

    Article  Google Scholar 

  66. Citak M, Suero EM, Citak M, Dunbar NJ, Branch SH, Conditt MA, et al. Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique? Knee. 2013;20(4):268–71. https://doi.org/10.1016/j.knee.2012.11.001.

    Article  Google Scholar 

  67. Smith JR, Riches PE, Rowe PJ. Accuracy of a freehand sculpting tool for unicondylar knee replacement. Int J Med Robot. 2014;10(2):162–9. https://doi.org/10.1002/rcs.1522.

    Article  Google Scholar 

  68. Malhotra R, Gupta S, Gupta V, Manhas V. navigated unicompartmental knee arthroplasty: a different perspective. Clin Orthop Surg. 2021;13(4):491–8. https://doi.org/10.4055/cios20166.

    Article  Google Scholar 

  69. Pearle AD, O’Loughlin PF, Kendoff DO. Robot-assisted unicompartmental knee arthroplasty. J Arthroplas. 2010;25(2):230–7. https://doi.org/10.1016/j.arth.2008.09.024.

    Article  Google Scholar 

  70. Rodriguez F, Harris S, Jakopec M, Barrett A, Gomes P, Henckel J, et al. Robotic clinical trials of uni-condylar arthroplasty. Int J Med Robot. 2005;1(4):20–8. https://doi.org/10.1002/rcs.52.

    Article  Google Scholar 

  71. Bouché PA, Corsia S, Hallé A, Gaujac N, Nizard R. Comparative efficacy of the different cutting guides in unicompartmental knee arthroplasty: a systematic-review and network meta-analysis. Knee. 2023;41:72–82. https://doi.org/10.1016/j.knee.2023.01.003.

    Article  Google Scholar 

  72. Zhang Q, Zhang Q, Guo W, Liu Z, Cheng L, Yue D, et al. The learning curve for minimally invasive Oxford phase 3 unicompartmental knee arthroplasty: cumulative summation test for learning curve (LC-CUSUM). J Orthop Surg Res. 2014;9:81. https://doi.org/10.1186/s13018-014-0081-8.

    Article  Google Scholar 

  73. Rees JL, Price AJ, Beard DJ, Dodd CA, Murray DW. Minimally invasive Oxford unicompartmental knee arthroplasty: functional results at 1 year and the effect of surgical inexperience. Knee. 2004;11(5):363–7. https://doi.org/10.1016/j.knee.2003.12.006.

    Article  Google Scholar 

  74. Goh GS, Haffar A, Tarabichi S, Courtney PM, Krueger CA, Lonner JH. Robotic-assisted versus manual unicompartmental knee arthroplasty: a time-driven activity-based cost analysis. J Arthroplas. 2022;37(6):1023–8. https://doi.org/10.1016/j.arth.2022.02.029.

    Article  Google Scholar 

  75. Hansen DC, Kusuma SK, Palmer RM, Harris KB. Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty. J Arthroplasty. 2014;29(9):1784–9. https://doi.org/10.1016/j.arth.2014.04.012.

    Article  Google Scholar 

  76. MacCallum KP, Danoff JR, Geller JA. Tibial baseplate positioning in robotic-assisted and conventional unicompartmental knee arthroplasty. Eur J Orthop Surg Traumatol. 2016;26(1):93–8. https://doi.org/10.1007/s00590-015-1708-0.

    Article  Google Scholar 

  77. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res. 2007;463:31–6.

    Article  Google Scholar 

  78. Begum FA, Kayani B, Morgan SDJ, Ahmed SS, Singh S, Haddad FS. Robotic technology: current concepts, operative techniques and emerging uses in unicompartmental knee arthroplasty. EFORT Open Rev. 2020;5(5):312–8. https://doi.org/10.1302/2058-5241.5.190089.

    Article  Google Scholar 

  79. Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can Robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov Decision Anal J Arthroplas. 2016;31(4):759–65. https://doi.org/10.1016/j.arth.2015.10.018.

    Article  Google Scholar 

  80. Clement ND, Deehan DJ, Patton JT. Robot-assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective: a markov decision analysis. Bone Joint J. 2019;101-b(9):1063–70. https://doi.org/10.1302/0301-620x.101b9.Bjj-2018-1658.R1.

    Article  Google Scholar 

  81. Christen B, Tanner L, Ettinger M, Bonnin MP, Koch PP, Calliess T. Comparative cost analysis of four different computer-assisted technologies to implant a total knee arthroplasty over conventional instrumentation. J Pers Med. 2022;12(2):184. https://doi.org/10.3390/jpm12020184.

    Article  Google Scholar 

  82. Swank ML, Alkire M, Conditt M, Lonner JH. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop (Belle Mead NJ). 2009;38(2 Suppl):32–6.

    Google Scholar 

  83. Favroul C, Batailler C, Canetti R, Shatrov J, Zambianchi F, Catani F, et al. Image-based robotic unicompartmental knee arthroplasty allowed to match the rotation of the tibial implant with the native kinematic knee alignment. Int Orthop. 2023;47(2):519–26. https://doi.org/10.1007/s00264-022-05637-1.

    Article  Google Scholar 

  84. He G, Ricca JM, Dai AZ, Mustahsan VM, Cai Y, Bielski MR, et al. A novel bone registration method using impression molding and structured-light 3D scanning technology. J Orthop Res. 2022;40(10):2340–9. https://doi.org/10.1002/jor.25275.

    Article  Google Scholar 

  85. Panchmatia JR, Visenio MR, Panch T. The role of artificial intelligence in orthopaedic surgery. Br J Hosp Med. 2018;79(12):676–81. https://doi.org/10.12968/hmed.2018.79.12.676.

    Article  Google Scholar 

  86. Khan RA, Jawaid M, Khan AR, Sajjad M. ChatGPT - Reshaping medical education and clinical management. Pak J Med Sci. 2023;39(2):605–7. https://doi.org/10.12669/pjms.39.2.7653.

    Article  Google Scholar 

  87. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Front Med. 2020;14(4):417–30. https://doi.org/10.1007/s11684-020-0770-0.

    Article  Google Scholar 

  88. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial Intelligence and the Future of Surgical Robotics. Ann Surg. 2019;270(2):223–6. https://doi.org/10.1097/sla.0000000000003262.

    Article  Google Scholar 

  89. Li W, Xu SM, Zhang DB, Bi HY, Gu GS. Research advances in the application of AI for preoperative measurements in total knee arthroplasty. Life (Basel). 2023;13(2):451.

    Google Scholar 

Download references

Acknowledgements

None

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this review. The idea was conceived by Hyuk-Soo Han. Literature search and data analysis, drafting of the manuscript was performed by Sung Eun Kim and Hyuk-Soo Han. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hyuk-Soo Han.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.E., Han, HS. Robotic-assisted unicompartmental knee arthroplasty: historical perspectives and current innovations. Biomed. Eng. Lett. 13, 543–552 (2023). https://doi.org/10.1007/s13534-023-00323-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00323-6

Keywords

Navigation