Skip to main content
Log in

Recent trends and challenges of surface electromyography in prosthetic applications

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Surface electromyography (sEMG) meets extensive applications in the field of prosthesis in the current period. The effectiveness of sEMG in prosthesis applications has been verified by numerous revolutionary developments and extensive research attempts. A large volume of research and literature works have explored and validated the vast use of these signals in prostheses as an assistive technology. The objective of this paper is to conduct a systematic review and offer a detailed overview of the work record in the prosthesis and myoelectric interfaces framework. This review utilized a systematic search strategy to identify published articles discussing the state-of-the-art applications of sEMG in prostheses (including upper limb prosthesis and lower limb prostheses). Relevant studies were identified using electronic databases such as PubMed, IEEE Explore, SCOPUS, ScienceDirect, Google Scholar and Web of Science. Out of 3791 studies retrieved from the databases, 188 articles were found to be potentially relevant (after screening of abstracts and application of inclusion–exclusion criteria) and included in this review. This review presents an investigative analysis of sEMG-based prosthetic applications to assist the readers in making further advancements in this field. It also discusses the fundamental advantages and disadvantages of using sEMG in prosthetic applications. It also includes some important guidelines to follow in order to improve the performance of sEMG-based prosthesis. The findings of this study support the widespread use of sEMG in prosthetics. It is concluded that sEMG-based prosthesis technology, still in its sprouting phase, requires significant explorations for further development. Supplementary investigations are necessary in the direction of making a seamless mechanism of biomechatronics for sEMG-based prosthesis by cohesive efforts of robotic researchers and biomedical engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Triwiyanto, T., Caesarendra, W., Purnomo, M.H., Sułowicz, M., Wisana, I.D.G.H., Titisari, D., Lamidi, L. and Rismayani, R., 2022. Embedded machine learning using a multi-thread algorithm on a Raspberry Pi platform to improve prosthetic hand performance. Micromachines13(2), p.191.

  2. Burhan, N., & Ghazali, R. (2016, October). Feature extraction of surface electromyography (sEMG) and signal processing technique in wavelet transform: A review. In 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 141–146). IEEE.

References

  1. Hoozemans MJM, van Dieën JH. Prediction of handgrip forces using surface EMG of forearm muscles. J Electromyogr Kinesiol. 2005;15(4):358–66. https://doi.org/10.1016/j.jelekin.2004.09.001.

    Article  Google Scholar 

  2. Bilodeau M, Schindler-Ivens S, Williams DM, Chandran R, Sharma SS. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol. 2003;13(1):83–92. https://doi.org/10.1016/S1050-6411(02)00050-0.

    Article  Google Scholar 

  3. Reiter R. Eine neue elektrokunsthand. Grenzgeb Med. 1948;1(4):133–5.

    Google Scholar 

  4. Kobrinski AE, et al. Problems of bioelectric control. IFAC Proc Vol. 1960;1(1):629–33. https://doi.org/10.1016/s1474-6670(17)70141-3.

    Article  Google Scholar 

  5. Ajiboye AB, Weir RFF. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):280–91. https://doi.org/10.1109/TNSRE.2005.847357.

    Article  Google Scholar 

  6. Huang CN, Chen CH, Chung HY. Application of facial electromyography in computer mouse access for people with disabilities. Disabil Rehabil. 2006;28(4):231–7. https://doi.org/10.1080/09638280500158349.

    Article  Google Scholar 

  7. Ferris DP, Lewis CL. “Robotic lower limb exoskeletons using proportional myoelectric control,” In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 2009, pp. 2119–2124. https://doi.org/10.1109/IEMBS.2009.5333984.

  8. Micera S, Carpaneto J, Raspopovic S. Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng. 2010;3:48–68. https://doi.org/10.1109/RBME.2010.2085429.

    Article  Google Scholar 

  9. Moon I, Lee M, Chu J, Mun M. Wearable EMG-based HCI for electric-powered wheelchair users with motor disabilities. Proc IEEE Int Conf Robot Autom. 2005;2005:2649–54. https://doi.org/10.1109/ROBOT.2005.1570513.

    Article  Google Scholar 

  10. Stepp CE. Surface electromyography for speech and swallowing systems: measurement, analysis, and interpretation. J Speech Lang Hear Res. 2012;55(4):1232–46. https://doi.org/10.1044/1092-4388(2011/11-0214).

    Article  Google Scholar 

  11. Xing S, Zhang X. EMG-driven computer game for post-stroke rehabilitation, in 2010 IEEE Conference on Robotics, Automation and Mechatronics, RAM 2010, 2010, pp. 32–36. https://doi.org/10.1109/RAMECH.2010.5513218

  12. Costanza E, Inverso SA, Allen R. “Toward subtle intimate interfaces for mobile devices using an EMG controller,” in Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’05, 2005, p. 481. https://doi.org/10.1145/1054972.1055039

  13. Costanza E, Inverso SA, Allen R, Maes P. “Intimate interfaces in action: Assessing the usability and subtlety of emg-based motionless gestures,” in Conference on Human Factors in Computing Systems - Proceedings, 2007, pp. 819–828. https://doi.org/10.1145/1240624.1240747

  14. Costanza E, Perdomo A, Inverso SA, Allen RK. “EMG as a subtle input interface for mobile computing,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3160, pp. 426–430, 2004, https://doi.org/10.1007/978-3-540-28637-0_50

  15. Jorgensen C, Dusan S. Speech interfaces based upon surface electromyography. Speech Commun. 2010;52(4):354–66. https://doi.org/10.1016/j.specom.2009.11.003.

    Article  Google Scholar 

  16. Saponas TS, Tan DS, Morris D, Balakrishnan R. “Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces,” in Conference on Human Factors in Computing Systems - Proceedings, 2008, pp. 515–524. https://doi.org/10.1145/1357054.1357138.

  17. Saponas TS, Tan DS, Morris D, Turner J, Landay JA. Making muscle-computer interfaces more practical. Conf Human Factors Comput Syst Proc. 2010;2:851–4. https://doi.org/10.1145/1753326.1753451.

    Article  Google Scholar 

  18. Jung JY, Park YK, Lee JW. “Wearable mobile phone using EMG and controlling method thereof,” 2009 Accessed: May 09, 2020. [Online]. Available: https://patents.google.com/patent/US7596393B2/en

  19. Tan D, Saponas T, Morris D, Turner J. “Wearable electromyography-based controllers for human-computer interface,” 2012, https://doi.org/10.1145/1060000/1055039.

  20. Farina D, Lorrain T, Negro F, Jiang N. “High-density EMG E-textile systems for the control of active prostheses,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 2010, pp. 3591–3593. https://doi.org/10.1109/IEMBS.2010.5627455.

  21. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol Meas. 2007;28(11):1405–19. https://doi.org/10.1088/0967-3334/28/11/007.

    Article  Google Scholar 

  22. Kim S, Lee S, Jeong W. EMG measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization. Polymers. 2020. https://doi.org/10.3390/POLYM12102406.

    Article  Google Scholar 

  23. McGuigan PM, Colyer SL. Textile electrodes embedded in clothing: a practical alternative to traditional surface electromyography when assessing muscle excitation during functional movements. J Sports Sci Med. 2018;17(1):101–9.

    Google Scholar 

  24. Barbero M, Merletti R, Rainoldi A. Atlas of muscle innervation zones: understanding surface electromyography and its applications. 2012. Accessed: May 09, 2020. [Online]. Available: https://books.google.co.in/books?hl=en&lr=&id=rWF-8HE9kf8C&oi=fnd&pg=PR3&dq=M.+Barbero,+R.+Merletti,+A.+Rainoldi,+Atlas+of+Muscle+Innervation+Zones,Springer-Verlag+Italia,+Milan,+Italy,+2012,+ISBN+978-88-470-2462-5.&ots=FCUrd-wU3J&sig=PkYuEBZrHs3g_GP60U3NA3FQ7xQ

  25. Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV. Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng. 2009;56(5):1427–34. https://doi.org/10.1109/TBME.2008.2005485.

    Article  Google Scholar 

  26. He H, Kiguchi K. “A study on EMG-based control of exoskeleton robots for human lower-limb motion assist,” in Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB, 2007, pp. 292–295. doi: https://doi.org/10.1109/ITAB.2007.4407405

  27. Jou SC, Maier-Hein L, Schultz T, Waibel A. “Articulatory feature classification using surface electromyography,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal ProcessingProceedings, 2006, vol. 1. https://doi.org/10.1109/icassp.2006.1660093

  28. Sugie N, Tsunoda K. A speech prosthesis employing a speech synthesizer—vowel discrimination from perioral muscle activities and vowel production. IEEE Trans Biomed Eng. 1985. https://doi.org/10.1109/TBME.1985.325564.

    Article  Google Scholar 

  29. Wand M, Schultz T. “Analysis of phone confusion in EMG-based speech recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, 2011, pp. 757–760. https://doi.org/10.1109/ICASSP.2011.5946514

  30. Sebelius FCP, Rosén BN, Lundborg GN. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg. 2005;30(4):780–9. https://doi.org/10.1016/j.jhsa.2005.01.002.

    Article  Google Scholar 

  31. Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):185–92. https://doi.org/10.1109/TNSRE.2009.2039619.

    Article  Google Scholar 

  32. Oskoei MA, Hu H. Myoelectric control systems—a survey. Biomed Signal Process Control. 2007. https://doi.org/10.1016/j.bspc.2007.07.009.

    Article  Google Scholar 

  33. Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira TMM. Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng. 2010;38(4):305–45. https://doi.org/10.1615/CritRevBiomedEng.v38.i4.10.

    Article  Google Scholar 

  34. Hakonen M, Piitulainen H, Visala A. Current state of digital signal processing in myoelectric interfaces and related applications. Biomed Signal Process Control. 2015. https://doi.org/10.1016/j.bspc.2015.02.009.

    Article  Google Scholar 

  35. Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 1993;40(1):82–94. https://doi.org/10.1109/10.204774.

    Article  Google Scholar 

  36. Farrell TR, Weir RF. The optimal controller delay for myoelectric prostheses. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):111–8. https://doi.org/10.1109/TNSRE.2007.891391.

    Article  Google Scholar 

  37. Boostani R, Moradi M. Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas. 2003. https://doi.org/10.1088/0967-3334/24/2/307.

    Article  Google Scholar 

  38. Huang Y, Englehart KB, Hudgins B, Chan ADC. A gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng. 2005;52(11):1801–11. https://doi.org/10.1109/TBME.2005.856295.

    Article  Google Scholar 

  39. Chan FHY, Yang YS, Lam FK, Zhang YT, Parker PA. Fuzzy EMG classification for prosthesis control. IEEE Trans Rehabil Eng. 2000;8(3):305–11. https://doi.org/10.1109/86.867872.

    Article  Google Scholar 

  40. Fontana J. “Classification of EMG signals to control a prosthetic hand using time-frequesncy representations and Support Vector Machines,” Doctoral Dissertations, 2010, Accessed: May 10, 2020. [Online]. Available: https://digitalcommons.latech.edu/dissertations/401

  41. Khezri M, Jahed M, Sadati N. “Neuro-fuzzy surface EMG pattern recognition for multifunctional hand prosthesis control,” in IEEE International Symposium on Industrial Electronics, 2007, pp. 269–274. https://doi.org/10.1109/ISIE.2007.4374610.

  42. Chan ADC, Englehart KB. Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans Biomed Eng. 2005;52(1):121–4. https://doi.org/10.1109/TBME.2004.836492.

    Article  Google Scholar 

  43. Carrozza MC et al. “On the development of a novel adaptive prosthetic hand with compliant joints: Experimental platform and EMG control,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2005, pp. 3951–3956. https://doi.org/10.1109/IROS.2005.1545585.

  44. Boschmann A, Platzner M, Robrecht M, Hahn M, Winkler M. “Development of a pattern recognition-based myoelectric transhumeral prosthesis with multifunctional simultaneous control using a model-driven approach for mechatronic systems. ,” in Proceedings of the MyoElectric Controls/Powered Prosthetics Symposium Fredericton, New Brunswick, Canada., Aug, 2011

  45. Herle S, Raica P, Lazea G, Robotin R, Marcu C, Tamas L. “Classification of surface electromyographic signals for control of upper limb virtual prosthesis using time-domain features,” in 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2008 - THETA 16th Edition—Proceedings, 2008, vol. 3, pp. 160–165. https://doi.org/10.1109/AQTR.2008.4588902.

  46. Karlik B, Tokhi MO, Alci M. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng. 2003;50(11):1255–61. https://doi.org/10.1109/TBME.2003.818469.

    Article  Google Scholar 

  47. Tenore F, Ramos A, Fahmy V, Acharya S, Etienne-Cummings R, Thakor NV. “Towards the control of individual fingers of a prosthetic hand using surface EMG signals,” in Annual International Conference of the IEEE Engineering in Medicine and Biology–Proceedings, 2007, pp. 6145–6148.https://doi.org/10.1109/IEMBS.2007.4353752.

  48. McMillan G. “The technology and applications of biopotential-based control,” RTO educational notes, 1998

  49. Li G. “Electromyography pattern-recognition-based control of powered multifunctional upper-limb prostheses.” Adv Appl Electromyograph INTECH. 2011. https://doi.org/10.5772/22876.

    Article  Google Scholar 

  50. Cordella F, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016. https://doi.org/10.3389/fnins.2016.00209.

    Article  Google Scholar 

  51. Mohd Zaini MH, Ahmad, “Su SA. Surgical and non-surgical prosthetic hands control: a review,” in 2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011, 2011, pp. 634–637, https://doi.org/10.1109/ISIEA.2011.6108792

  52. Das N, Nagpal N, Bankura SS. A review on the advancements in the field of upper limb prosthesis. J Med Eng Technol. 2018. https://doi.org/10.1080/03091902.2019.1576793.

    Article  Google Scholar 

  53. Geethanjali P. Myoelectric control of prosthetic hands: state-of-the-art review. Med Devices Evidence Res. 2016. https://doi.org/10.2147/MDER.S91102.

    Article  Google Scholar 

  54. Madusanka DGK, Wijayasingha LNS, Gopura RARC, Amarasinghe YWR, Mann GK. “A review on hybrid myoelectric control systems for upper limb prosthesis,” in MERCon 2015 - Moratuwa Engineering Research Conference, May 2015, pp. 136–141. https://doi.org/10.1109/MERCon.2015.7112334

  55. Veer K. Development of sensor system with measurement of surface electromyogram signal for clinical use. Optik (Stuttg). 2016;127(1):352–6. https://doi.org/10.1016/j.ijleo.2015.10.072.

    Article  Google Scholar 

  56. Veer K. A flexible approach for segregating physiological signals. Measurement. 2016;87:21–6. https://doi.org/10.1016/j.measurement.2016.03.017.

    Article  Google Scholar 

  57. Lazaro JB, Abuan DD, Linsangan NB, Panganiban AG. Surface electromyography signal for control of myoelectric prosthesis of the upper-limb using independent component analysis. J Autom Control Eng. 2014. https://doi.org/10.12720/joace.2.1.94-98.

    Article  Google Scholar 

  58. Salem FHA, Mohamed KS, Mohamed SBK, el Gehani AA. “The development of body-powered prosthetic hand controlled by EMG signals using DSP processor with virtual prosthesis implementation,” in International Conference on Electrical and Computer Engineering, 2013, https://doi.org/10.1155/2013/598945

  59. Castellini C, van der Smagt P. Surface EMG in advanced hand prosthetics. Biol Cybern. 2009;100(1):35–47. https://doi.org/10.1007/s00422-008-0278-1.

    Article  Google Scholar 

  60. Tavakoli M, Benussi C, Lourenco JL. Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and efficient approach. Expert Syst Appl. 2017;79:322–32. https://doi.org/10.1016/j.eswa.2017.03.012.

    Article  Google Scholar 

  61. Brunelli D, Tadesse AM, Vodermayer B, Nowak M, Castellini C. “Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control,” in Proceedings - 2015 6th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2015, 2015, pp. 94–99. https://doi.org/10.1109/IWASI.2015.7184964.

  62. Castellini C, Gruppioni E, Davalli A, Sandini G. Fine detection of grasp force and posture by amputees via surface electromyography. J Physiol Paris. 2009;103(3–5):255–62. https://doi.org/10.1016/j.jphysparis.2009.08.008.

    Article  Google Scholar 

  63. Khushaba RN, Kodagoda S, Takruri M, Dissanayake G. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst Appl. 2012;39(12):10731–8. https://doi.org/10.1016/j.eswa.2012.02.192.

    Article  Google Scholar 

  64. Yatsenko D, McDonnall D, Shane Guillory K. “Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG,” in Annual International Conference of the IEEE Engineering in Medicine and Biology–Proceedings, 2007, pp. 6133–6136. https://doi.org/10.1109/IEMBS.2007.4353749

  65. Sturma A, et al. A surface EMG test tool to measure proportional prosthetic control. Biomed Tech. 2015;60(3):207–13. https://doi.org/10.1515/bmt-2014-0022.

    Article  Google Scholar 

  66. Amsuss S, Paredes LP, Rudigkeit N, Graimann B, Herrmann MJ, Farina D. “Long term stability of surface EMG pattern classification for prosthetic control,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, pp. 3622–3625. https://doi.org/10.1109/EMBC.2013.6610327.

  67. Waris MA, Jamil M, Gilani SO. Classification of functional motions of hand for upper limb prosthesis with surface electromyography. Int J Biol Biomed Eng. 2020;8:15–20.

    Google Scholar 

  68. Atzori M, et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data. 2014;1(1):1–13. https://doi.org/10.1038/sdata.2014.53.

    Article  Google Scholar 

  69. Tabakov M, Fonal K, Abd-Alhameed RA, Qahwaji R. “Fuzzy bionic hand control in real-time based on electromyography signal analysis,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 9875 LNCS, pp. 292–302. https://doi.org/10.1007/978-3-319-45243-2_27.

  70. Tabakov M, Fonal K, Abd-Alhameed RA, Qahwaji R. “Bionic hand control in real-time based on electromyography signal analysis,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10840 LNCS, Springer Verlag, 2018, pp. 21–38. https://doi.org/10.1007/978-3-319-90287-6_2

  71. Wang N, Lao K, Zhang X. Design and myoelectric control of an anthropomorphic prosthetic hand. J Bionic Eng. 2017;14(1):47–59. https://doi.org/10.1016/S1672-6529(16)60377-3.

    Article  Google Scholar 

  72. Sudarsan LS, Sekaran EC. Design and development of EMG controlled prosthetics limb. Proc Eng. 2012;38:3547–51. https://doi.org/10.1016/j.proeng.2012.06.409.

    Article  Google Scholar 

  73. Andrade NA, Borges GA, Nascimento FADO, Romariz ARS, da Rocha AF. “A new biomechanical hand prosthesis controlled by surface electromyographic signals,” in Annual International Conference of the IEEE Engineering in Medicine and Biology–Proceedings, 2007, pp. 6141–6144. https://doi.org/10.1109/IEMBS.2007.4353751

  74. Xu K, Guo W, Hua L, Sheng X, Zhu X. “A prosthetic arm based on EMG pattern recognition,” in 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, 2016, pp. 1179–1184. https://doi.org/10.1109/ROBIO.2016.7866485.

  75. Aranceta-Garza A, Lakany H, Conway BA. “An investigation into thumb rotation using high density surface electromyography of extrinsic hand muscles,” in Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, 2013, pp. 3751–3755. https://doi.org/10.1109/SMC.2013.639.

  76. Chowdhury R, Reaz M, Ali M, Bakar A, Chellappan K, Chang T. Surface electromyography signal processing and classification techniques. Sensors. 2013;13(9):12431–66. https://doi.org/10.3390/s130912431.

    Article  Google Scholar 

  77. Reaz MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online. 2006;8(1):11–35. https://doi.org/10.1251/bpo115.

    Article  Google Scholar 

  78. Du YC, Lin CH, Shyu LY, Chen T. Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis. Expert Syst Appl. 2010;37(6):4283–91. https://doi.org/10.1016/j.eswa.2009.11.072.

    Article  Google Scholar 

  79. Alkan A, Günay M. Identification of EMG signals using discriminant analysis and SVM classifier. Expert Syst Appl. 2012;39(1):44–7. https://doi.org/10.1016/j.eswa.2011.06.043.

    Article  Google Scholar 

  80. Moura KOA, Favieiro GW, Balbinot A. “Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Oct. 2016, pp. 788–791. https://doi.org/10.1109/EMBC.2016.7590819

  81. Veer K. A technique for classification and decomposition of muscle signal for control of myoelectric prostheses based on wavelet statistical classifier. Measurement. 2015;60:283–91. https://doi.org/10.1016/j.measurement.2014.10.023.

    Article  Google Scholar 

  82. Veer K, Sharma T. A novel feature extraction for robust EMG pattern recognition. J Med Eng Technol. 2016;40(4):149–54. https://doi.org/10.3109/03091902.2016.1153739.

    Article  Google Scholar 

  83. Wang R, Huang C, Li B. Neural network-based surface electromyography motion pattern classifier for the control of prostheses. Ann Int Conf IEEE Eng Med Biolo Proc. 1997;3:1275–7. https://doi.org/10.1109/iembs.1997.756607.

    Article  Google Scholar 

  84. Sidek SN, Jalaludin NA, Shamsudin AU. Surface electromyography (sEMG)-based thumb-tip angle and force estimation using Artificial Neural Network for prosthetic thumb. Proc Eng. 2012;41:650–6. https://doi.org/10.1016/j.proeng.2012.07.225.

    Article  Google Scholar 

  85. Bu N, Fukuda O, Tsuji T. EMG-based motion discrimination using a novel recurrent neural network. J Intell Inf Syst. 2003;21(2):113–26. https://doi.org/10.1023/A:1024706431807.

    Article  Google Scholar 

  86. Hargrove LJ, Scheme EJ, Englehart KB, Hudgins BS. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):49–57. https://doi.org/10.1109/TNSRE.2009.2039590.

    Article  Google Scholar 

  87. Atzori M, Cognolato M, Müller H. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front Neurorobot. 2016. https://doi.org/10.3389/fnbot.2016.00009.

    Article  Google Scholar 

  88. Young AJ, Smith LH, Rouse EJ, Hargrove LJ. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans Biomed Eng. 2013;60(5):1250–8. https://doi.org/10.1109/TBME.2012.2232293.

    Article  Google Scholar 

  89. Favieiro GW, Balbinot A. “Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, pp. 7888–7891. https://doi.org/10.1109/IEMBS.2011.6091945

  90. Mane SM, Kambli RA, Kazi FS, Singh NM. Hand motion recognition from single channel surface EMG using wavelet & artificial neural network. Proc Comput Sci. 2015;49(1):58–65. https://doi.org/10.1016/j.procs.2015.04.227.

    Article  Google Scholar 

  91. Resnik L, Huang HH, Winslow A, Crouch DL, Zhang F, Wolk N. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. J Neuroeng Rehabil. 2018;15(1):1–13. https://doi.org/10.1186/s12984-018-0361-3.

    Article  Google Scholar 

  92. Krasoulis A, Vijayakumar S, Nazarpour K. Effect of user practice on prosthetic finger control with an intuitive myoelectric decoder. Front Neurosci. 2019;13:891. https://doi.org/10.3389/fnins.2019.00891.

    Article  Google Scholar 

  93. Gini G, Arvetti M, Somlai I, Folgheraiter M. Acquisition and analysis of EMG signals to recognize multiple hand movements for prosthetic applications. Appl Bionics Biomech. 2012;9(2):145–55. https://doi.org/10.3233/ABB-2011-0024.

    Article  Google Scholar 

  94. Li C, Li G, Jiang G, Chen D, Liu H. Surface EMG data aggregation processing for intelligent prosthetic action recognition. Neural Comput Appl. 2018. https://doi.org/10.1007/s00521-018-3909-z.

    Article  Google Scholar 

  95. Kaur A, Agarwal R, Kumar A. Adaptive threshold method for peak detection of surface electromyography signal from around shoulder muscles. J Appl Stat. 2018;45(4):714–26. https://doi.org/10.1080/02664763.2017.1293624.

    Article  MathSciNet  MATH  Google Scholar 

  96. Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: Analysis of user-prosthesis interaction. IEEE Trans Rob. 2008;24(1):170–84. https://doi.org/10.1109/TRO.2007.910708.

    Article  Google Scholar 

  97. Naik GR, Baker KG, Nguyen HT. Dependence independence measure for posterior and anterior EMG sensors used in simple and complex finger flexion movements: Evaluation using SDICA. IEEE J Biomed Health Inform. 2015;19(5):1689–96. https://doi.org/10.1109/JBHI.2014.2340397.

    Article  Google Scholar 

  98. Hiraiwa A, Shimohara K, Tokunaga Y. EMG pattern analysis and classification by neural network. Proc IEEE Int Conf Syst Man Cybern. 1989;3:1113–5. https://doi.org/10.1109/icsmc.1989.71472.

    Article  Google Scholar 

  99. Zhang Z, Yu X, Qian J. Classification of finger movements for prosthesis control with surface electromyography. Sens Mater. 2020;32(4):1523–32. https://doi.org/10.18494/SAM.2020.2652.

    Article  Google Scholar 

  100. Doerschuk PC, Gustafson DE, Willsky AS. Upper extremity limb function discrimination using EMG signal analysis. IEEE Trans Biomed Eng. 1983. https://doi.org/10.1109/TBME.1983.325162.

    Article  Google Scholar 

  101. Huang H, Zhou P, Li G, Kuiken TA. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng. 2008;16(1):37–45. https://doi.org/10.1109/TNSRE.2007.910282.

    Article  Google Scholar 

  102. Ju Z, Ouyang G, Wilamowska-Korsak M, Liu H. Surface EMG based hand manipulation identification via nonlinear feature extraction and classification. IEEE Sens J. 2013;13(9):3302–11. https://doi.org/10.1109/JSEN.2013.2259051.

    Article  Google Scholar 

  103. Naik GR, Selvan SE, Gobbo M, Acharyya A, Nguyen HT. Principal component analysis applied to surface electromyography: a comprehensive review. IEEE Access. 2016. https://doi.org/10.1109/ACCESS.2016.2593013.

    Article  Google Scholar 

  104. Matrone GC, Cipriani C, Secco EL, Magenes G, Carrozza MC. Principal components analysis based control of a multi-dof underactuated prosthetic hand. J Neuroeng Rehabil. 2010;7(1):16. https://doi.org/10.1186/1743-0003-7-16.

    Article  Google Scholar 

  105. Matrone GC, Cipriani C, Carrozza MC, Magenes G. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. J Neuroeng Rehabil. 2012;9(1):40. https://doi.org/10.1186/1743-0003-9-40.

    Article  Google Scholar 

  106. Segil JL, Weir RFF. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):249–57. https://doi.org/10.1109/TNSRE.2013.2260172.

    Article  Google Scholar 

  107. Hargrove LJ, Li G, Englehart KB, Hudgins BS. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. IEEE Trans Biomed Eng. 2009;56(5):1407–14. https://doi.org/10.1109/TBME.2008.2008171.

    Article  Google Scholar 

  108. Raj R, Ramakrishna R, Sivanandan KS. A real time surface electromyography signal driven prosthetic hand model using PID controlled DC motor. Biomed Eng Lett. 2016;6(4):276–86. https://doi.org/10.1007/s13534-016-0240-4.

    Article  Google Scholar 

  109. Khokhar ZO, Xiao ZG, Menon C. Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Biomed Eng Online. 2010;9(1):1–17. https://doi.org/10.1186/1475-925X-9-41.

    Article  Google Scholar 

  110. Choi C, Kim J. Synergy matrices to estimate fluid wrist movements by surface electromyography. Med Eng Phys. 2011;33(8):916–23. https://doi.org/10.1016/j.medengphy.2011.02.006.

    Article  Google Scholar 

  111. Al-Timemy AH, Bugmann G, Escudero J, Outram N. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE J Biomed Health Inform. 2013;17(3):608–18. https://doi.org/10.1109/JBHI.2013.2249590.

    Article  Google Scholar 

  112. Shenoy P, Miller KJ, Crawford B, Rao RPN. Online electromyographic control of a robotic prosthesis. IEEE Trans Biomed Eng. 2008;55(3):1128–35. https://doi.org/10.1109/TBME.2007.909536.

    Article  Google Scholar 

  113. Lee S, Kim MO, Kang T, Park J, Choi Y. Knit Band sensor for myoelectric control of surface EMG-based prosthetic hand. IEEE Sens J. 2018;18(20):8578–86. https://doi.org/10.1109/JSEN.2018.2865623.

    Article  Google Scholar 

  114. Amsuss S, Goebel PM, Jiang N, Graimann B, Paredes L, Farina D. Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control. IEEE Trans Biomed Eng. 2014;61(4):1167–76. https://doi.org/10.1109/TBME.2013.2296274.

    Article  Google Scholar 

  115. Jiang N, Englehart KB, Parker PA. Extracting simultaneous and proportional neural control information for multiple-dof prostheses from the surface electromyographic signal. IEEE Trans Biomed Eng. 2009;56(4):1070–80. https://doi.org/10.1109/TBME.2008.2007967.

    Article  Google Scholar 

  116. Mostafa SS, Ahmad M, Awal MA. “Clench force estimation by surface electromyography for neural prosthesis hand,” in 2012 International Conference on Informatics, Electronics and Vision, ICIEV 2012, 2012, pp. 505–510. doi: https://doi.org/10.1109/ICIEV.2012.6317489

  117. Gijsberts A, et al. Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front Neurorobot. 2014. https://doi.org/10.3389/fnbot.2014.00008.

    Article  Google Scholar 

  118. Li G, Li J, Ju Z, Sun Y, Kong J. A novel feature extraction method for machine learning based on surface electromyography from healthy brain. Neural Comput Appl. 2019;31(12):9013–22. https://doi.org/10.1007/s00521-019-04147-3.

    Article  Google Scholar 

  119. Strazzulla I, Nowak M, Controzzi M, Cipriani C, Castellini C. Online bimanual manipulation using surface electromyography and incremental learning. IEEE Trans Neural Syst Rehabil Eng. 2017;25(3):227–34. https://doi.org/10.1109/TNSRE.2016.2554884.

    Article  Google Scholar 

  120. Brunelli D, Farella E, Giovanelli D, Milosevic B, Minakov I. Design considerations for wireless acquisition of multichannel sEMG signals in prosthetic hand control. IEEE Sens J. 2016. https://doi.org/10.1109/jsen.2016.2596712.

    Article  Google Scholar 

  121. Jiang YL, Sakoda S, Togane M, Morishita S, Yokoi H. “One-handed wearable sEMG sensor for myoelectric control of prosthetic hands,” in Lecture Notes in Electrical Engineering, 2017, vol. 399, pp. 105–109https://doi.org/10.1007/978-981-10-2404-7_9

  122. Stepp CE, Heaton JT, Rolland RG, Hillman RE. Neck and face surface electromyography for prosthetic voice control after total laryngectomy. IEEE Trans Neural Syst Rehabil Eng. 2009;17(2):146–55. https://doi.org/10.1109/TNSRE.2009.2017805.

    Article  Google Scholar 

  123. Farina D, et al. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):797–809. https://doi.org/10.1109/TNSRE.2014.2305111.

    Article  Google Scholar 

  124. Shahzad W, Ayaz Y, Khan MJ, Naseer N, Khan M. Enhanced Performance for multi-forearm movement decoding using hybrid IMU–sEMG interface. Front Neurorobot. 2019. https://doi.org/10.3389/FNBOT.2019.00043.

    Article  Google Scholar 

  125. Chang W, Dai L, Sheng S, Tan JTC, Zhu C, Duan F. “A hierarchical hand motions recognition method based on IMU and sEMG sensors,” 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, pp. 1024–1029, 2015, https://doi.org/10.1109/ROBIO.2015.7418906

  126. Krasoulis A, Vijayakumar S, Nazarpour K. Multi-grip classification-based prosthesis control with Two EMG-IMU sensors. IEEE Trans Neural Syst Rehabil Eng. 2020;28(2):508–18. https://doi.org/10.1109/TNSRE.2019.2959243.

    Article  Google Scholar 

  127. Lauretti C, Davalli A, Sacchetti R, Guglielmelli E, Zollo L. “Fusion of M-IMU and EMG signals for the control of trans-humeral prostheses,” Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2016, pp. 1123–1128, 2016, doi: https://doi.org/10.1109/BIOROB.2016.7523782

  128. Ganesan Y, Gobee S, Durairajah V. Development of an upper limb exoskeleton for rehabilitation with feedback from EMG and IMU sensor. Proc Comput Sci. 2015;76:53–9. https://doi.org/10.1016/J.PROCS.2015.12.275.

    Article  Google Scholar 

  129. Bennett DA, Goldfarb M. IMU-based wrist rotation control of a transradial myoelectric prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2018;26(2):419–27. https://doi.org/10.1109/TNSRE.2017.2682642.

    Article  Google Scholar 

  130. Goldfarb M, Lawson BE, Shultz AH. Realizing the promise of robotic leg prostheses. Sci Transl Med. 2013. https://doi.org/10.1126/scitranslmed.3007312.

    Article  Google Scholar 

  131. Tucker MR, et al. Control strategies for active lower extremity prosthetics and orthotics: a review. J NeuroEng Rehabil. 2015. https://doi.org/10.1186/1743-0003-12-1.

    Article  Google Scholar 

  132. Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. Active lower limb prosthetics: a systematic review of design issues and solutions. BioMed Eng. 2016. https://doi.org/10.1186/s12938-016-0284-9.

    Article  Google Scholar 

  133. Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil. 2005;84(8):563–75. https://doi.org/10.1097/01.phm.0000174665.74933.0b.

    Article  Google Scholar 

  134. Singh LH, Singh T, Singh LD, Singh T, Madde S, Rathod S. “Development of low cost prosthetic limb using EMG signals for amputees,” in 11th International Conference on Industrial and Information Systems, ICIIS 2016 - Conference Proceedings, pp. 742–745. doi: https://doi.org/10.1109/ICIINFS.2016.8263036.

  135. Cadena F, Sanipatin J, Verdezoto G, Cervantes H, Ortiz D, Ojeda D. “Acquisition and Conditioning of Electromyographic Signals for Prosthetic Legs,” in Proceedings–2015 Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2015, 2015, pp. 360–365. https://doi.org/10.1109/APCASE.2015.70.

  136. Geng Y, Xu X, Chen L, Yang P. “Design and analysis of active transfemoral prosthesis,” in IECON Proceedings (Industrial Electronics Conference), 2010, pp. 1495–1499. https://doi.org/10.1109/IECON.2010.5675461.

  137. Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56(1):65–73. https://doi.org/10.1109/TBME.2008.2003293.

    Article  Google Scholar 

  138. Hefferman GM, Zhang F, Nunnery MJ, Huang H. Integration of surface electromyographic sensors with the transfemoral amputee socket: a comparison of four differing configurations. Prosthet Orthot Int. 2015;39(2):166–73. https://doi.org/10.1177/0309364613516484.

    Article  Google Scholar 

  139. Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012. https://doi.org/10.1016/j.medengphy.2011.11.018.

    Article  Google Scholar 

  140. Au SK, Bonato P, Herr H. “An EMG-position controlled system for an active ankle-foot prosthesis: An initial experimental study,” in Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 2005, vol. 2005, pp. 375–379. https://doi.org/10.1109/ICORR.2005.1501123

  141. Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008;21(4):654–66. https://doi.org/10.1016/j.neunet.2008.03.006.

    Article  Google Scholar 

  142. Kawamoto H, Sankai Y. “Power assist system HAL-3 for gait disorder person,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2398, pp. 196–203https://doi.org/10.1007/3-540-45491-8_43

  143. Kawamoto H, Lee S, Kanbe S, Sankai Y. Power assist method for HAL-3 using EMG-based feedback controller. Proc IEEE Int Conf Syst Man Cybern. 2003;2:1648–53. https://doi.org/10.1109/icsmc.2003.1244649.

    Article  Google Scholar 

  144. Kawamoto H, Kanbe S, Sankai Y. “Power assist method for HAL-3 estimating operator’s intention based on motion information,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 2003, pp. 67–72. https://doi.org/10.1109/ROMAN.2003.1251800

  145. Kawamoto H. et al., “Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 2010, pp. 462–466. https://doi.org/10.1109/IEMBS.2010.5626191.

  146. Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint. IEEE Int Conf Intell Robots Syst. 2002;2:1499–504. https://doi.org/10.1109/irds.2002.1043967.

    Article  Google Scholar 

  147. Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng. 2011;58(1):144–51. https://doi.org/10.1109/TBME.2010.2070840.

    Article  Google Scholar 

  148. Jin D, Yang J, Zhang R, Wang R, Zhang J. Terrain identification for prosthetic knees based on electromyographic signal features. Tsinghua Sci Technol. 2006;11:74–9.

    Article  Google Scholar 

  149. Atri R, et al. Smart data-driven optimization of powered prosthetic ankles using surface electromyography. Sensors. 2018;18(8):2705. https://doi.org/10.3390/s18082705.

    Article  Google Scholar 

  150. Garikayi T, van den Heever D, Matope S. Analysis of surface electromyography signal features on osteomyoplastic transtibial amputees for pattern recognition control architectures. Biomed Signal Process Control. 2018;40:10–22. https://doi.org/10.1016/j.bspc.2017.09.007.

    Article  Google Scholar 

  151. Chen B, Wang Q, Wang L. “Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Nov. 2014, pp. 2545–2548. https://doi.org/10.1109/EMBC.2014.6944141

  152. Seyedali M, Czerniecki JM, Morgenroth DC, Hahn ME. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. J Neuroeng Rehabil. 2012;9(1):1–9. https://doi.org/10.1186/1743-0003-9-29.

    Article  Google Scholar 

  153. Chen L, Yang P, Zu L, Guo X. “Movement recognition by electromyography signal for transfemoral prosthesis control,” in 2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, 2009, pp. 1127–1132. https://doi.org/10.1109/ICIEA.2009.5138333

  154. Young AJ, Kuiken TA, Hargrove LJ. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014. https://doi.org/10.1088/1741-2560/11/5/056021.

    Article  Google Scholar 

  155. Fleming A, Stafford N, Huang S, Hu X, Ferris DP, Huang HH. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. J Neural Eng. 2021. https://doi.org/10.1088/1741-2552/AC1176.

    Article  Google Scholar 

  156. Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans Biomed Eng. 2011. https://doi.org/10.1109/TBME.2011.2161671.

    Article  Google Scholar 

  157. Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008;205(21):3413–22. https://doi.org/10.1242/jeb.009241.

    Article  Google Scholar 

  158. Wang X, Yang S, Cao Y, Ding Y, Zhang Z. “The real time motion pattern recognition of lower limb based on sEMG signals,” in Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2020, pp. 407–411, Nov. 2020, https://doi.org/10.1109/ICIBA50161.2020.9277504

  159. Kust SY, Markova MV. “An algorithm for determination of terrain type in the lower limb prosthesis control,” in Proceedings - 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2021, pp. 145–148, 2021, https://doi.org/10.1109/USBEREIT51232.2021.9455119.

  160. Ding Z, Yang C, Wang Z, Yin X, Jiang F. Online adaptive prediction of human motion intention based on sEMG. Sensors. 2021. https://doi.org/10.3390/S21082882.

    Article  Google Scholar 

  161. Khiabani H, Ahmadi M. “A classical machine learning approach for emg-based lower limb intention detection for human-robot interaction systems,”in 2021 IEEE International Conference on Autonomous Systems (ICAS), pp. 1–5, 2021, https://doi.org/10.1109/ICAS49788.2021.9551190

  162. Keleş AD, Yucesoy CA. Development of a neural network based control algorithm for powered ankle prosthesis. J Biomech. 2020. https://doi.org/10.1016/J.JBIOMECH.2020.110087.

    Article  Google Scholar 

  163. Cimolato A, Milandri G, Mattos LS, de Momi E, Laffranchi M, de Michieli L. “Hybrid machine learning-neuromusculoskeletal modeling for control of lower limb prosthetics,” in Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2020, pp. 557–563, 2020, https://doi.org/10.1109/BIOROB49111.2020.9224448.

  164. Spanias JA, Simon AM, Finucane SB, Perreault EJ, Hargrove LJ. Online adaptive neural control of a robotic lower limb prosthesis. J Neural Eng. 2018. https://doi.org/10.1088/1741-2552/AA92A8.

    Article  Google Scholar 

  165. Torrealba RR, Fernández-López G, Grieco JC. Towards the development of knee prostheses: review of current researches. Kybernetes. 2008;37(9–10):1561–76. https://doi.org/10.1108/03684920810907869.

    Article  Google Scholar 

  166. Bai O, Atri R, Marquez JS, Fei DY. “Characterization of lower limb activity during gait using wearable, multi-channel surface EMG and IMU sensors,” in 2017 International Electrical Engineering Congress, iEECON 2017, 2017, https://doi.org/10.1109/IEECON.2017.8075872.

  167. Su BY, Wang J, Liu SQ, Sheng M, Jiang J, Xiang K. A cnn-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1032–42. https://doi.org/10.1109/TNSRE.2019.2909585.

    Article  Google Scholar 

  168. Ryu J, Lee BH, Maeng J, Kim DH. sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier. Med Eng Phys. 2019;69:50–7. https://doi.org/10.1016/J.MEDENGPHY.2019.05.006.

    Article  Google Scholar 

  169. Lu Y, Wang H, Hu F, Zhou B, Xi H. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning. Med Biol Eng Comput. 2021. https://doi.org/10.1007/S11517-021-02335-9.

    Article  Google Scholar 

  170. Xu D, Wang Q. On-board Training Strategy for IMU-Based Real-Time Locomotion Recognition of Transtibial Amputees With Robotic Prostheses. Front Neurorobot. 2020. https://doi.org/10.3389/FNBOT.2020.00047.

    Article  Google Scholar 

  171. Negi S, Sharma S, Sharma N. FSR and IMU sensors-based human gait phase detection and its correlation with EMG signal for different terrain walk. Sens Rev. 2021;41(3):235–45. https://doi.org/10.1108/SR-10-2020-0249.

    Article  Google Scholar 

  172. Peng F, Zhang C, Xu B, Li J, Wang Z, Su H. Locomotion prediction for lower limb prostheses in complex environments via sEMG and inertial sensors. Complexity. 2020. https://doi.org/10.1155/2020/8810663.

    Article  Google Scholar 

  173. Lai JCK, Schoen MP, Gracia AP, Naidu DS, Leung SW. Prosthetic devices: challenges and implications of robotic implants and biological interfaces. Proc Inst Mech Eng H. 2007;221(2):173–83. https://doi.org/10.1243/09544119JEIM210.

    Article  Google Scholar 

  174. Parajuli N, et al. Real-time EMG based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation. Sensors. 2019;19(20):4596. https://doi.org/10.3390/s19204596.

    Article  Google Scholar 

  175. González-Fernández M. Development of upper limb prostheses: current progress and areas for growth. Arch Phys Med Rehabil. 2014. https://doi.org/10.1016/j.apmr.2013.11.021.

    Article  Google Scholar 

  176. Pasquina PF, Perry BN, Miller ME, Ling GSF, Tsao JW. Recent advances in bioelectric prostheses. Neurol Clin Pract. 2015;5(2):164–70. https://doi.org/10.1212/CPJ.0000000000000132.

    Article  Google Scholar 

  177. Samuel OW, et al. Intelligent EMG pattern recognition control method for upper-limb multifunctional prostheses: advances, current challenges, and future prospects. IEEE Access. 2019;7:10150–65. https://doi.org/10.1109/ACCESS.2019.2891350.

    Article  Google Scholar 

  178. Hargrove L, Englehart K, Hudgins B. “The effect of electrode displacements on pattern recognition based myoelectric control,” in Annual International Conference of the IEEE Engineering in Medicine and Biology–Proceedings, 2006, pp. 2203–2206. https://doi.org/10.1109/IEMBS.2006.260681

  179. Samuel OW, et al. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Comput Biol Med. 2017;90:76–87. https://doi.org/10.1016/j.compbiomed.2017.09.013.

    Article  Google Scholar 

  180. Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6):643–60. https://doi.org/10.1682/JRRD.2010.09.0177.

    Article  Google Scholar 

  181. Butterfass J, Grebenstein M, Liu H, Hirzinger G. DLR-Hand II: Next generation of a dextrous robot hand. Proc IEEE Int Conf Robotics Autom. 2001;1:109–14. https://doi.org/10.1109/robot.2001.932538.

    Article  Google Scholar 

  182. Zahak M. “Signal Acquisition using surface emg and circuit design considerations for robotic prosthesis,” in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, InTech,https://doi.org/10.5772/52556

  183. Scheme E, Fougner A, Stavdahl AD, Chan C, Englehart K. “Examining the adverse effects of limb position on pattern recognition based myoelectric control,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 2010, pp. 6337–6340. https://doi.org/10.1109/IEMBS.2010.5627638

  184. Tkach D, Huang H, Kuiken TA. Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil. 2010;7(1):1–13. https://doi.org/10.1186/1743-0003-7-21.

    Article  Google Scholar 

  185. Edeer D, Martin C. “Upper limb prostheses: a review of the literature: with a focus on myoelectric hands,” in WorkSafeBC, Evidence-Based Practice Group, 2011

  186. Dellon B, Matsuoka Y. Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics]. IEEE Robot Autom Mag. 2007;14(1):30–4. https://doi.org/10.1109/MRA.2007.339622.

    Article  Google Scholar 

  187. Castellini C, et al. Proceedings of the first workshop on peripheral machine interfaces: Going beyond traditional surface electromyography. Front Neurorobot. 2014;8:22. https://doi.org/10.3389/fnbot.2014.00022.

    Article  Google Scholar 

  188. Yadav D, Yadav S, Veer K. A comprehensive assessment of brain computer interfaces: recent trends and challenges. J Neurosci Methods. 2020;346:108918. https://doi.org/10.1016/j.jneumeth.2020.108918.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DY. The first draft of the manuscript was written by DY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karan Veer.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Veer, K. Recent trends and challenges of surface electromyography in prosthetic applications. Biomed. Eng. Lett. 13, 353–373 (2023). https://doi.org/10.1007/s13534-023-00281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00281-z

Keywords

Navigation