Skip to main content
Log in

Wearable EEG and beyond

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The electroencephalogram (EEG) is a widely used non-invasive method for monitoring the brain. It is based upon placing conductive electrodes on the scalp which measure the small electrical potentials that arise outside of the head due to neuronal action within the brain. Historically this has been a large and bulky technology, restricted to the monitoring of subjects in a lab or clinic while they are stationary. Over the last decade much research effort has been put into the creation of “wearable EEG” which overcomes these limitations and allows the long term non-invasive recording of brain signals while people are out of the lab and moving about. This paper reviews the recent progress in this field, with particular emphasis on the electrodes used to make connections to the head and the physical EEG hardware. The emergence of conformal “tattoo” type EEG electrodes is highlighted as a key next step for giving very small and socially discrete units. In addition, new recommendations for the performance validation of novel electrode technologies are given, with standards in this area seen as the current main bottleneck to the wider take up of wearable EEG. The paper concludes by considering the next steps in the creation of next generation wearable EEG units, showing that a wide range of research avenues are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Figure originally taken from [45]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Smith SJM. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 2005;76(2):ii2–7.

    Google Scholar 

  2. Allen JJB, Kline JP. Frontal EEG asymmetry, emotion, and psychopathology: the first, and the next 25 years. Biol Psychol. 2004;67(1–2):1–5.

    Article  Google Scholar 

  3. Casson AJ, Yates DC, Smith SJ, Duncan JS, Rodriguez-Villegas E. Wearable electroencephalography. IEEE Eng Med Biol Mag. 2010;29(3):44–56.

    Article  Google Scholar 

  4. Debener S, Minow F, Emkes R, Gandras K, de Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology. 2012;49(11):1617–21.

    Article  Google Scholar 

  5. Mihajlovic V, Grundlehner B, Vullers R, Penders J. Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE J Biomed Health Inf. 2015;19(1):6–21.

    Article  Google Scholar 

  6. Mullen TR, Kothe CAE, Chi YM, Ojeda A, Kerth T, Makeig S, Jung T, Cauwenberghs G. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans Biomed Eng. 2015;62(11):2553–67.

    Article  Google Scholar 

  7. Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St. Louis: Elsevier; 2011.

    Google Scholar 

  8. Arico P, Borghini G, Flumeri GD, Sciaraffa N, Babiloni F. Passive BCI beyond the lab: current trends and future directions. Physiol Meas. 2018;39(8):1–19.

    Article  Google Scholar 

  9. Binnie CDJ, Rowan AJ, Gutter TH. A manual of electroencephalographic technology. Cambridge: Cambridge University Press; 1982.

    Google Scholar 

  10. Casson AJ, Abdulaal M, Dulabh M, Kohli S, Krachunov S, Trimble EV. Electroencephalogram. In: Tamura T, Chen W, editors. Seamless healthcare monitoring. Cham: Springer; 2018. p. 45–81.

    Chapter  Google Scholar 

  11. Cohen MX. Analyzing neural time series data: theory and practice. Boston: MIT Press; 2014.

    Book  Google Scholar 

  12. Im C, Seo JM. A review of electrodes for the electrical brain signal recording. Biomed Eng Lett. 2016;6(3):104–12.

    Article  Google Scholar 

  13. Lopez-Gordo MA, Sanchez-Morillo D, Valle FP. Dry EEG electrodes. Sensors. 2014;14(7):12847–70.

    Article  Google Scholar 

  14. Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng. 2010;3(1):106–19.

    Article  Google Scholar 

  15. Xu J, Mitra S, Van Hoof C, Yazicioglu RF, Makinwa KAA. Active electrodes for wearable EEG acquisition: review and electronics design methodology. IEEE Rev Biomed Eng. 2017;10(1):187–98.

    Article  Google Scholar 

  16. Mitchell S, Sherry C. Physics for OCR A for double award. Oxford: Heinemann Educational Publishers; 2001.

    Google Scholar 

  17. Casson AJ, Chen G, Rodriguez-Villegas E. Wearable algorithms: an overview of a truly multi-disciplinary problem. In: Sazonov E, Neuman MR, editors. Wearable sensors: fundamentals, implementation and applications Amsterdam. Amsterdam: Elsevier; 2014. p. 353–82.

    Google Scholar 

  18. Casson AJ, Rodriguez-Villegas E. Data reduction techniques to facilitate wireless and long term AEEG epilepsy monitoring. In: Conference proceedings of IEEE NER. 2007; Hawaii.

  19. Raduntz T. Signal quality evaluation of emerging EEG devices. Front Physiol. 2018;9(98):1–12.

    Google Scholar 

  20. Hairston WD, Whitaker KW, Ries AJ, Vettel JM, Bradford JC, Kerick SE, McDowell K. Usability of four commercially-oriented EEG systems. J Neural Eng. 2014;11(4):046018.

    Article  Google Scholar 

  21. mBrainTrain. Smarting EEG unit. 2018. https://mbraintrain.com/smarting/.

  22. Brain Products. LiveAmp EEG unit. 2018. https://www.brainproducts.com/.

  23. gtec. g.Nautilus EEG unit. 2018. http://www.gtec.at/.

  24. Cognionics. Mobile-128 EEG unit. 2018. https://www.cognionics.net/mobile-128.

  25. Emotiv. EPOC Flex EEG unit. 2018. https://www.emotiv.com/epoc-flex/.

  26. Waltz E. Measuring free will of bungee jumpers. IEEE Spectrum. 2018;2018(2):1.

    Google Scholar 

  27. mBrainTrain. EEG in the rainforests and caves of the Amazon jungle. 2018. https://www.facebook.com/pg/mBrainTrain/posts/.

  28. Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54(2):1289–96.

    Article  Google Scholar 

  29. Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Muller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63(3):1203–11.

    Article  Google Scholar 

  30. Nordin AD, Hairston WD, Ferris D. Overcoming obstacles in mobile EEG. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.

  31. Kohli S, Casson AJ. Towards out-of-the-lab EEG in uncontrolled environments: feasibility study of dry EEG recordings during exercise bike riding. In: Conference proceedings of IEEE EMBC. 2015; Milan.

  32. Zink R, Hunyadi B, Van Huffel S, Vos MD. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks. J Neural Eng. 2016;13(4):046017.

    Article  Google Scholar 

  33. Casson AJ, Trimble EV. Enabling free movement EEG tasks by eye fixation and gyroscope motion correction: EEG effects of color priming in dress shopping. IEEE Access. 2018;6(1):62975–87.

    Article  Google Scholar 

  34. Nordin AD, Hairston WD, Ferris DP. Dual-electrode motion artifact cancellation for mobile electroencephalography. J Neural Eng. 2018;15(5):056024.

    Article  Google Scholar 

  35. Iber C, Ancoli-Israel S, Chesson A, Quan SF, editors. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westchester: American Academy of Sleep Medicine; 2007.

    Google Scholar 

  36. Grass Technologies. EC2 conductive paste. 2018. http://www.grasstechnologies.com/.

  37. Taheri BA, Knight RT, Smith RL. A dry electrode for EEG recording. Electroencephalogr Clin Neurophysiol. 1994;90(5):376–83.

    Article  Google Scholar 

  38. de Camp NV, Kalinka G, Bergeler J. Light-cured polymer electrodes for non-invasive EEG recordings. Sci Rep. 2018;8(14041):1–9.

    Google Scholar 

  39. Nathan V, Jafari R. Design principles and dynamic front end reconfiguration for low noise EEG acquisition with finger based dry electrodes. IEEE Trans Biomed Circuits Syst. 2015;9(5):631–40.

    Article  Google Scholar 

  40. Wearable sensing. Home page. 2016. http://www.wearablesensing.com/.

  41. Cognionics. Home page. 2016. http://www.cognionics.com/.

  42. Neuroelectrics. Products/electrodes. 2016. http://neuroelectrics.com/.

  43. Mindo. Home page. 2016. http://mindo.com.tw/en/.

  44. gtec. Products/g.SAHARA. 2016. http://www.gtec.at/.

  45. Krachunov S, Casson AJ. 3D printed dry EEG electrodes. Sensors. 2016;16(10):1635.

    Article  Google Scholar 

  46. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sens Actuator A Phys. 2012;174(2):96–102.

    Article  Google Scholar 

  47. Beach C, Krachunov S, Pope J, Fafoutis X, Piechocki RJ, Craddock I, Casson AJ. An ultra low power personalizable wrist worn ECG monitor integrated with IoT infrastructure. IEEE Access. 2018;6(1):44010–21.

    Article  Google Scholar 

  48. Huigen E, Peper A, Grimbergen CA. Investigation into the origin of the noise of surface electrodes. Med Biol Eng Comput. 2002;40(3):332–8.

    Article  Google Scholar 

  49. Etienne A, Krishnan A, Kelly S, Grover P. EEG systems for accommodating thick and curly hair. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.

  50. Lofhede J, Seoane F, Thordstein M. Soft textile electrodes for EEG monitoring. In: Conference proceedings of IEEE ITAB. 2010; Corfu.

  51. Matiko JW, Wei Y, Torah R, Grabham N, Paul G, Beeby S, Tudor J. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Mater Struct. 2015;24(12):125028.

    Article  Google Scholar 

  52. Karim N, Afroj S, Malandraki A, Butterworth S, Beach C, Rigout M, Novoselov KS, Casson AJ, Yeates SG. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C. 2017;5(44):11640–8.

    Article  Google Scholar 

  53. Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA. Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces. PloS One. 2018;13(2):e0189415.

    Article  Google Scholar 

  54. Verwulgen S, Lacko D, Justine H, Kustermans S, Moons S, Thys F, Zelck S, Vaes K, Huysmans T, Vleugels J, Truijen S. Determining comfortable pressure ranges for wearable EEG headsets. In: Conference proceedings of AHFE 2018 international conference on human factors and wearable technologies, and human factors in game design and virtual environments. 2018; Orlando.

  55. Robbins K, Su KM, Hairston WD. An 18-subject EEG data collection using a visual-oddball task, designed for benchmarking algorithms and headset performance comparisons. Data Brief. 2018;16(1):227–30.

    Article  Google Scholar 

  56. Holmes MD. Dense array EEG: methodology and new hypothesis on epilepsy syndromes. Epilepsia. 2008;49(s3):3–14.

    Article  Google Scholar 

  57. Winter BB, Webster JG. Driven-right-leg circuit design. IEEE Trans Biomed Eng. 1983;30(1):62–6.

    Article  Google Scholar 

  58. camNtech Actiwave. Home page. 2013. http://www.camntech.com/.

  59. Matthews R, McDonald NJ, Hervieux P, Turner PJ, Steindorf MA. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state. In: Conference proceedings of IEEE EMBC. 2007; Lyon.

  60. Xu J, Yazicioglu RF, Grundlehner B, Harpe P, Makinwa KAA, Van Hoof C. A 160 \(\mu\)W 8-channel active electrode system for EEG monitoring. IEEE Trans Biomed Circuits Syst. 2011;5(6):555–67.

    Article  Google Scholar 

  61. Gargiulo G, Bifulco P, Calvo RA, Cesarelli M, Jin C, van Schaik A. A mobile EEG system with dry electrodes. In: Conference proceedings of IEEE BioCAS. 2008; Baltimore.

  62. IMEC. Holst Ccntre and Panasonic present wireless low-power active-electrode EEG headset. 2012. http://www.imec.be/.

  63. Patki S, Grundlehner B, Verwegen A, Mitra S, Xu J, Matsumoto A, Yazicioglu RF, Penders J. Wireless EEG system with real time impedance monitoring and active electrodes. In: Conference proceedings of IEEE BioCAS. 2012; Hsinchu.

  64. Estepp JR, Christensen JC, Monnin JW, Davis IM, Wilson GF. Validation of a dry electrode system for EEG. In: Conference proceedings of human factors and ergonomics society. 2009; San Antonio.

  65. Casson AJ. Artificial neural network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance. Front Neurosci. 2014;8(372):1–10.

    Google Scholar 

  66. Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116(4):799–806.

    Article  Google Scholar 

  67. Kohli S, Krachunov S, Casson AJ. Towards closed-loop transcranial electrical stimulation: a comparison of methods for real time tES-EEG artefact removal using a phantom head model. Brain Stim. 2017;10(2):467–8.

    Article  Google Scholar 

  68. Hairston WD, Slipher GA, Yu AB. Ballistic gelatin as a putative substrate for EEG phantom devices. In: Conference proceedings of IEEE EMBC. 2016; Orlando.

  69. Symeonidou ER, Nordin AD, Hairston WD, Ferris DP. Effects of cable sway, electrode surface area, and electrode mass on electroencephalography signal quality during motion. Sensors. 2018;18(4):1073.

    Article  Google Scholar 

  70. Krauss GL, Fisher RS. The Johns Hopkins atlas of digital EEG: an interactive training guide. Baltimore: Johns Hopkins University Press; 2006.

    Google Scholar 

  71. Kemp B, Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003;114(9):1755–61.

    Article  Google Scholar 

  72. Casson AJ, Rodriguez-Villegas E. Utilising noise to improve an interictal spike detector. J Neurosci Meth. 2011;201(1):262–8.

    Article  Google Scholar 

  73. Hairston WD, Nonte M. Using BCIs for benchmarking adaptive and low-resolution DAQ EEG approaches. In: Conference proceedings of first biannual neuroadaptive technology. 2017; Berlin.

  74. Poirier CJ, Gadfort P, Dixon AMR, Nonte MW, Conroy JK, Hairston WD. Hardware implementation of an adaptive data acquisition system for real-world EEG. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.

  75. Nonte MW, Conroy J, Gadfort P, Hairston WD. Online adaptive data acquisition enabling ultra-low power real-world EEG. In: Conference proceedings of IEEE ISCAS. 2017; Baltimore.

  76. Bin Altaf MA, Zhang C, Yoo J. A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J Solid-State Circuits. 2015;50(11):2728–40.

    Article  Google Scholar 

  77. Imtiaz SA, Jiang Z, Rodriguez-Villegas E. A 950 nW analog-based data reduction chip for wearable EEG systems in epilepsy. IEEE J Solid-State Circuits. 2017;52(9):2362–73.

    Article  Google Scholar 

  78. Imtiaz SA, Jiang Z, Rodriguez-Villegas E. An ultralow power system on chip for automatic sleep staging. IEEE J Solid-State Circuits. 2017;52(3):822–33.

    Article  Google Scholar 

  79. Islam R, Hairston WD, Oates T, Mohsenin T. An EEG artifact detection and removal technique for embedded processors. In: Conference proceedings of IEEE SPMB. 2017; Philadelphia.

  80. Lab Streaming Layer. Home page. 2014. https://github.com/sccn/labstreaminglayer.

  81. Blum S, Debener S, Emkes R, Volkening N, Fudickar S, Bleichner MG. EEG recording and online signal processing on Android: a multiapp framework for brain-computer interfaces on smartphone. BioMed Res Int. 2017;2017(3072870):1–12.

    Article  Google Scholar 

  82. Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, Pellman J, Poline JB, Rokem A, Schaefer G, Sochat V, Triplett W, Turner JA, Varoquaux G, Poldrack RA. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3(160044):1–9.

    Google Scholar 

  83. Lin CT, Liao LD, Liu YH, Wang IJ, Lin BS, Chang JY. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng. 2011;58(5):1200–7.

    Article  Google Scholar 

  84. Debener S, Emkes R, De Vos M, Bleichner M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep. 2015;5(16743):1–11.

    Google Scholar 

  85. Looney D, Kidmose P, Park C, Ungstrup M, Rank ML, Rosenkranz K, Mandic D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse. 2012;3(6):32–42.

    Article  Google Scholar 

  86. Kidmose P, Looney D, Ungstrup M, Rank ML, Mandic DP. A study of evoked potentials from ear-EEG. IEEE Trans Biomed Eng. 2013;60(10):2824–30.

    Article  Google Scholar 

  87. Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using ear-EEG. Biomed Eng Online. 2017;16(11):1–15.

    Google Scholar 

  88. Goverdovsky V, von Rosenberg W, Nakamura T, Looney D, Sharp DJ, Papavassiliou C, Morrell MJ, Mandic DP. Hearables: multimodal physiological in-ear sensing. Sci Rep. 2017;7(6948):1–10.

    Google Scholar 

  89. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim T, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA. Epidermal electronics. Science. 2011;333(6044):838843.

    Article  Google Scholar 

  90. Norton JJ, Lee DS, Lee JW, Lee W, Kwon O, Won P, Jung SY, Cheng H, Jeong JW, Akce A, Umunna S, Na I, Kwon YH, Wang XQ, Liu Z, Paik U, Huang Y, Bretl T, Yeo WH, Rogers JA. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc Natl Acad Sci USA. 2015;112(13):39203925.

    Article  Google Scholar 

  91. Jacob NK, Balaban E, Saunders R, Batchelor JC, Yeates SG, Casson AJ. An exploration of behind-the-ear ECG signals from a single ear using inkjet printed conformal tattoo electrodes. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.

  92. Moy T, Huang L, Rieutort-Louis W, Wu C, Cuff P, Wagner S, Sturm JC, Verma N. An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J Solid-State Circuits. 2017;52(1):309–21.

    Article  Google Scholar 

  93. Casson AJ, Saunders R, Batchelor JC. Five day attachment ECG electrodes for longitudinal bio-sensing using conformal tattoo substrates. IEEE Sens J. 2017;17(7):2205–14.

    Article  Google Scholar 

  94. Mikkelsen KB, Kidmose P, Hansen LK. On the keyhole hypothesis: high mutual information between ear and scalp EEG. Front Hum Neurosci. 2017;11(341):1–9.

    Google Scholar 

  95. Muraja-Murro A, Mervaala E, Westeren-Punnonen S, Lepola P, Toyras J, Myllymaa S, Julkunen P, Kantanen AM, Kalviainen R, Myllymaa K. Forehead EEG electrode set versus full-head scalp EEG in 100 patients with altered mental state. Epilepsy Behav. 2015;49(8):245–9.

    Article  Google Scholar 

  96. Xu J, Konijnenburg M, Lukita B, Song S, Ha H, van Wegberg R, Sheikhi E, Mazzillo M, Fallica G, Raedt WD, Hoof CV, Helleputte NV. A 665\(\mu\)W silicon photomultiplier-based NIRS/EEG/EIT monitoring ASIC for wearable functional brain imaging. In: Conference proceedings of IEEE ISSCC. 2018; San Francisco.

  97. Strickland E. Facebook announces “typing-by-brain” project. IEEE Spectrum. 2017;2017(4):1.

    Google Scholar 

  98. Ledezma-Zavala E, Ramrez-Mendoza RA. Towards a new framework for advanced driver assistance systems. IJIDeM. 2018;12(1):215–23.

    Google Scholar 

  99. Babiloni F, Cincotti F, Mattia D, Mattiocco M, De Vico Fallani F, Tocci A, Bianchi L, Marciani MG, Astolfi L. Hypermethods for EEG hyperscanning. In: Conference proceedings of IEEE EMBC. 2006; New York.

  100. Broccard FD, Mullen T, Chi YM, Peterson D, Iversen JR, Arnold M, Kreutz-Delgado K, Jung TP, Makeig S, Poizner H, Sejnowski T, Cauwenberghs G. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders. Ann Biomed Eng. 2014;42(8):1573–93.

    Article  Google Scholar 

  101. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced parkinson disease. Ann Neurol. 2013;73(3):449–57.

    Article  Google Scholar 

  102. Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):410–21.

    Article  Google Scholar 

  103. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013;496(7444):159161.

    Article  Google Scholar 

  104. Zeto. The FIRST true dry electrode EEG system cleared for clinical use by FDA. 2018. http://zeto-inc.com/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Casson.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 9, 53–71 (2019). https://doi.org/10.1007/s13534-018-00093-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-018-00093-6

Keywords

Navigation