Skip to main content
Log in

Practical circuits with Physarum Wires

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio-electronic components. Until recently, practical examples of electronic circuits using PWs have been limited. These PWs have been shown to be self repairing, offering significant advantage over traditional electronic components. This article documents work performed to produce practical circuits using PWs.

Methods

We have demonstrated through manufacture and testing of hybrid circuits that PWs can be used to produce a variety of practical electronic circuits. A plurality of different applications of PWs have been tested to show the universality of PWs in analogue and digital electronics.

Results

Voltage dividers can be produced using a pair of PWs in series with an output voltage accurate to within 12%. PWs can also transmit analogue and digital data with a frequency of up to 19 kHz, which with the addition of a buffer, can drive high current circuits. We have demonstrated that PWs can last approximately two months, a 4 fold increase on previous literature. Protoplasmic tubes can be modified with the addition of conductive or magnetic nano-particles to provide changes in functionality.

Conclusions

This work has documented novel macro-scale data transmission through biological material; it has advanced the field of bio-electronics by providing a cheap and easy to grow conducting bio-material which may be used in future hybrid electronic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palchetti I, Mascini M. Biosensor technology: a brief history. Sensors and Microsystems. Springer Netherlands; 2010. pp. 15–23.

    Google Scholar 

  2. Renaud S, Catargi B, Lang J. Biosensors in diabetes. IEEE Pulse. 2-14; 5(3): 30-4.

  3. Deutscher L, Renner LD, Cuniberti G. Flagella - templates for the synthesis of metallic nanowires. IFMBE Proc. 2013; 41:860–3.

    Article  Google Scholar 

  4. Magoga M, Joachim C. Conductance and transparence of long molecular wires. Phys Rev B. 1997; 56(8):4722.

    Article  Google Scholar 

  5. Ratner MA, Davis B, Kemp M, Mujica V, Roitberg A, Yaliraki S. Molecular wires: charge transport, mechanisms and control. Ann NY Acad Sci. 1998; 852:22–37.

    Article  Google Scholar 

  6. Tian W, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiak CP. Conductance spectra of molecular wires. J Chem Phys. 1998; 109(7):2874.

    Article  Google Scholar 

  7. Ito Y, Fukusaki E. DNA as a ‘Nanomaterial’. J Mol Catal B Enzym. 2004; 28(4–6):155–66.

    Article  Google Scholar 

  8. Adamatzky A. Towards plant wires. Biosystems. 2014; 122:1–6.

    Article  MathSciNet  Google Scholar 

  9. Lovley DR. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci. 2011; 4(12):4896–906.

    Article  Google Scholar 

  10. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol. 2006; 72(11):7345–8.

    Article  Google Scholar 

  11. Stephenson S, Stempen H. Myxomycetes: a handbook of slime molds. Timber Press; 2000.

    Google Scholar 

  12. Ueda T, Terayama K, Kurihara K, Kobatake Y. Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum. J Gen Physiol. 1975; 65(2):223–34.

    Article  Google Scholar 

  13. Whiting J, de Lacy Costello B, Adamatzky A. Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens Actuators B Chem. 2014; 191:844–53.

    Article  Google Scholar 

  14. Adamatzky A. Physarum Machines: Computers from Slime Mould. London: World Scientific Publishing Co.; 2010.

    Google Scholar 

  15. Adamatzky A. Tactile bristle sensors made with slime mold. IEEE Sens J. 2014; 14(2):324–32.

    Article  Google Scholar 

  16. Adamatzky A. Slime mould tactile sensor. Sens Actuators B Chem. 2013; 188:38–44.

    Article  Google Scholar 

  17. Häder DP, Schreckenbach T. Phototactic orientation in plasmodia of the acellular slime mold, Physarum polycephalum. Plant Cell Physiol. 1984; 25(1):55.

    Google Scholar 

  18. Mayne R, Adamatzky A. Slime mould foraging behaviour as optically-coupled logical operations. Int J Gen Syst. 2015; 44(3):305–13.

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakagaki T, Yamada H, Ueda T. Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys Chem. 1999; 82(1):23–8.

    Article  Google Scholar 

  20. Whiting J, de Lacy Costello B, Adamatzky A. Development and initial testing of a novel slime mould biosensor. Conf Proc IEEE Eng Med Biol Soc. 2014; 4042–5.

    Google Scholar 

  21. Whiting J, de Lacy Costello B, Adamatzky A. Physarum Chip:developments in growing computers from slime mould. UCNC: Unconventional Computation in Europe Workshop. 2014; 3.

    Google Scholar 

  22. Whiting J, de Lacy Costello B, Adamatzky A. Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. Biosystems. 2014; 119:45–52.

    Article  Google Scholar 

  23. Whiting J, de Lacy Costello B, Adamatzky A. Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems. 2014; 124:21–5.

    Article  Google Scholar 

  24. de Lacy Costello BP, Adamatzky A. Routing of Physarum polycephalum “signals” using simple chemicals. Commun Intergr Biol. 2014; 7(3):e28543.

    Article  Google Scholar 

  25. Nakagaki T, Yamada H. Tóth A. Intelligence: maze-solving by an amoeboid organism. Nature. 2000; 407(6803):470.

    Article  Google Scholar 

  26. Adamatzky A, Jones J. Road planning with slime mould: if Physarum built motorways it would route M6/M74 through Newcastle. Int J Bifurcation Chaos. 2010; 20(10):3065.

    Article  MathSciNet  Google Scholar 

  27. Adamatzky A. The world’s colonization and trade routes formation as imitated by slime mould. Int J Bifurcation Chaos. 2012; 22(08):1230028.

    Article  Google Scholar 

  28. Adamatzky A. Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed Eng Lett. 2013; 3(4):232–41.

    Article  Google Scholar 

  29. Adamatzky A. Slime mould electronic oscillators. Microelectron Eng. 2014; 124:58–65.

    Article  Google Scholar 

  30. Adamatzky AI. Route 20, autobahn 7, and slime mold:approximating the longest roads in USA and Germany with slime mold on 3-D terrains. Cybernetics. IEEE Trans. 2014; 44(1):126–36.

    Article  MathSciNet  Google Scholar 

  31. Whiting J, de Lacy Costello B, Adamatzky A. Transfer function of protoplasmic tubes of Physarum polycephalum. Biosystems. 2015; 128:48–51.

    Article  Google Scholar 

  32. Palleau E, Reece S, Desai SC, Smith ME, Dickey MD. Selfhealing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater. 2013; 25(11):1589–92.

    Article  Google Scholar 

  33. Williams KA, Boydston AJ, Bielawski CW. Towards electrically conductive, self-healing materials. J R Soc Interface. 2007; 4(13):359–62.

    Article  Google Scholar 

  34. Mayne R, Adamatzky A. Toward hybrid nanostructure-slime mould devices. Nano Life. 2015. 4:1450007.

    Article  Google Scholar 

  35. Mayne R, Patton D, de Lacy Costello B, Adamatzky A, Patton RC. On the internalisation, intraplasmodial carriage and excretion of metallic nanoparticles in the slime mould, Physarum polycephalum. Int J Nanotechnol Mol Comput. 2013; 3(3):1–14.

    Article  Google Scholar 

  36. Jones J, Whiting J, Adamatzky A. Quantitative transformation for implementation of adder circuits in physical systems. Biosystems. 2015; 134:16–23.

    Article  Google Scholar 

  37. Whiting J, Jones J, Bull L, Levin M, Adamatzky A. Towards a Physarum learning chip. Sci Rep. 2016; 6: 19948.

    Article  Google Scholar 

  38. Daniel JW, Rusch HP. Method for inducing sporulation of pure cultures of the myxomycete Physarum polycephalum. J Bacteriol. 1962; 83:234–40.

    Google Scholar 

  39. Reid CR, Latty T, Dussutour A, Beekman M. Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc Natl Acad Sci USA. 2012; 109(43):17490–4.

    Article  Google Scholar 

  40. Smith D, Ryan M. Implementing best practices and validation of cryopreservation techniques for microorganisms. Scientific World Journal. 2012; 2012:805659.

    Article  Google Scholar 

  41. Dimonte A, Berzina T, Cifarelli A, Chiesi V, Albertini F, Erokhin V. Conductivity patterning with Physarum polycephalum:natural growth and deflecting. Phys Stat Solidi (C). 2015; 12(1–2):197–201.

    Article  Google Scholar 

  42. Takamatsu A, Takaba E, Takizawa G. Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model. J Theor Biol. 2009; 256(1):29–44.

    Article  MathSciNet  Google Scholar 

  43. Renugopalakrishnan V, Lewis R. Bionanotechnology: Proteins to nanodevices. Springer Netherlands; 2006.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. H. Whiting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whiting, J.G.H., Mayne, R., Moody, N. et al. Practical circuits with Physarum Wires. Biomed. Eng. Lett. 6, 57–65 (2016). https://doi.org/10.1007/s13534-016-0212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0212-8

Keywords

Navigation