Skip to main content
Log in

Cytotoxicity of short-term exposure to sublethal dose of the insecticide thiamethoxam to male albino rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Thiamethoxam (TMX) is a systemic insecticide used to combat plant pests that might significantly affect food security. Therefore, the current study aimed to evaluate its mammalian toxicity against male albino rats following short-term administration of sublethal doses.

Methods

Two groups, control and treatment rats (eight males each), were orally administered distilled water and 1/20 LD50 (78.0 mg/kg B.W.) doses of TMX daily for 14 days. The biochemical, hematological, genotoxic, and histopathological responses were subsequently described.

Results

The results revealed significant decreases in the specific activities of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Mg+-ATPase in the TMX-treated rats compared to those in the control group. Additionally, alterations in blood parameters were reported for treated individuals. Significant increases in the number of tailings (14%), tail length (3.43 µm), tail DNA (3.62%), and tail moment (12.56%) as well as the frequency of micronucleated erythrocytes (MNs) were found in the TMX-treated animals. Moreover, transmission electron microscopy (TEM) of blood samples revealed swollen mitochondria with light-dense cristae, vacuoles (V), nuclei (N) (contained migrated chromatin), and rough endoplasmic reticulum (RER) in comparison to the firm structure of the negative control.

Conclusion

TMX exposure, especially at low doses, is an alarming sign of possible health hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data are available within the article or its supplementary materials. The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Matsuda K, Ihara M, Sattelle DB (2020) Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu Rev Pharmacol Toxicol 60:241–255. https://doi.org/10.1146/annurev-pharmtox-010818-02174

    Article  CAS  PubMed  Google Scholar 

  2. Abouelghar GE, Yassien RI, El-Bermawy ZA-E, Ammar HA, Shalaby YA-E (2020) Sublethal toxicity of thiamethoxam insecticide in albino mice: biochemical, oxidative damage and histopathological evaluations. Adv. J. Toxicol. Curr. Res. 4:017–028. https://doi.org/10.37871/ajtcr.id33

    Article  Google Scholar 

  3. Bagri P, Kumar V, Sikka AK (2015) An in vivo assay of the mutagenic potential of imidacloprid using sperm head abnormality test and dominant lethal test. Drug Chem Toxicol 38:342–348. https://doi.org/10.3109/01480545.2014.966832

    Article  CAS  PubMed  Google Scholar 

  4. Goulson D (2013) Review: an overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111

    Article  Google Scholar 

  5. Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pest Biochem Physiol 121:122–128. https://doi.org/10.1016/j.pestbp.2014.11.014

    Article  CAS  Google Scholar 

  6. Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908. https://doi.org/10.1021/JF101303G/ASSET/IMAGES/MEDIUM/JF-2010-01303G_0011.GIF

    Article  CAS  PubMed  Google Scholar 

  7. Elhamalawy OH, Al-Anany FS, El Makawy AI (2022) Thiamethoxam-induced hematological, biochemical, and genetic alterations and the ameliorated effect of Moringa oleifera in male mice. Toxicol Rep 9:94–101. https://doi.org/10.1016/J.TOXREP.2021.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodrigues KJA, Santana MB, Do Nascimento JLM, Picanço-Diniz DLW, Maués LAL, Santos SN, Ferreira VMM, Alfonso M, Durán R, Faro LRF (2010) Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotoxicol Environ Saf 73:101–107. https://doi.org/10.1016/j.ecoenv.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  9. Lu C, Chang C-H, Palmer C, Zhao M, Zhang Q (2018) Neonicotinoid residues in fruits and vegetables: an integrated dietary exposure assessment approach. Environ Sci Technol 52:3175–3184. https://doi.org/10.1021/acs.est.7b05596

    Article  CAS  PubMed  Google Scholar 

  10. Tomlin CDS (2006) The pesticide manual. A world compendium, 14th edn. British Crop Protection Council, Surry

    Google Scholar 

  11. Arfat Y, Mahmood N, Tahir MU, Rashid M, Anjum S, Zhao F, Li D-J, Sun Y-L, Hu L, Zhihao C, Yin C, Shang P, Qian A-R (2014) Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicol Rep 1:554–561. https://doi.org/10.1016/j.toxrep.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gul ST, Ahamd I, Saleemi MK, Ahmad M, Ahmad L, Khan A (2020) Toxico-pathological effects of thiamethoxam on hemato-biochemical and productive performance of commercial laying hens. Pak Vet J 40:449–454. https://doi.org/10.29261/pakvetj/2020.052

    Article  CAS  Google Scholar 

  13. Gul ST, Khan A, Ahmad M, Anwar MF, Khatoon A, Saleemi MK, Akram MN (2018) Effect of sublethal doses of thiamethoxam (a neonicotinoid) on hemato-biochemical parameters in broiler chicks. Toxin Rev 37:144–148. https://doi.org/10.1080/15569543.2017.1336731

    Article  CAS  Google Scholar 

  14. Gul ST, Khan RL, Saleemi MK, Ahmad M, Hussain R, Khan A (2022) Amelioration of toxicopathological effects of thiamethoxam in broiler birds with vitamin E and selenium. Toxin Rev 41:218–228. https://doi.org/10.1080/15569543.2020.1864647

    Article  CAS  Google Scholar 

  15. Hussain AGR, Noreen S, Abbas G, Chodhary IR, Khan A, Ahmed Z, Khan MK, Akram K, Ulhaq M, Ahmad N, Ali F, Niaz M (2020) Dose and time-related pathological and genotoxic studies on thiamethoxam in fresh water fish (Labeo rohita) in Pakistan. Pak Vet J 40:151–156. https://doi.org/10.29261/pakvetj/2020.002

    Article  CAS  Google Scholar 

  16. Chaudhry A, Kaur S, Bhinder P, Barna B (2012) Imidacloprid and thiamethoxam induced mutations in internal transcribed spacer 2 (ITS2) of Anopheles stephensi. Toxicol Int 19:201. https://doi.org/10.4103/0971-6580.97223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El Okle OS, El Euony OI, Khafaga AF, Lebda MA (2018) Thiamethoxam induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of oxidative stress, inflammation, and anti-apoptotic pathway. Environ Sci Pollut Res 25:4678–4689. https://doi.org/10.1007/S11356-017-0850-0

    Article  Google Scholar 

  18. Habotta OA, Ateya A, Saleh RM, El-Ashry ES (2021) Thiamethoxam-induced oxidative stress, lipid peroxidation, and disturbance of steroidogenic genes in male rats: palliative role of Saussurea lappa and Silybum marianum. Environ Toxicol 36:2051–2061. https://doi.org/10.1002/TOX.23322

    Article  CAS  PubMed  Google Scholar 

  19. Khaldoun-Oularbi H, Bouzid N, Boukreta S, Makhlouf C, Derriche F, Djennas N (2017) Thiamethoxam Actara® induced alterations in kidney liver cerebellum and hippocampus of male rats. J Xenobiot. https://doi.org/10.4081/xeno.2017.7149

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Anadón A, Wu Q, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA (2018) Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Ann Rev Pharmacol Toxicol. https://doi.org/10.1146/ANNUREV-PHARMTOX-010617-052429

    Article  Google Scholar 

  21. Şenyildiz M, Kilinc A, Ozden S (2018) Investigation of the genotoxic and cytotoxic effects of widely used neonicotinoid insecticides in HepG2 and SH-SY5Y cells. Toxicol Ind Health 34:375–383. https://doi.org/10.1177/0748233718762609

    Article  CAS  PubMed  Google Scholar 

  22. Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI (2015) Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ Sci Pollut Res 22:17041–17052. https://doi.org/10.1007/s11356-015-4927-3

    Article  CAS  Google Scholar 

  23. Şekeroğlu V, Şekeroğlu ZA, Kefelioğlu H (2013) Cytogenetic effects of commercial formulations of deltamethrin and/or thiacloprid on wistar rat bone marrow cells. Environ Toxicol 28:524–531. https://doi.org/10.1002/tox.20746

    Article  CAS  PubMed  Google Scholar 

  24. Sorensen KC, Stucki JW, Warner RE, Wagner ED, Plewa MJ (2005) Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay. Environ Mol Mutagen 46:174–181. https://doi.org/10.1002/em.20144

    Article  CAS  PubMed  Google Scholar 

  25. Feki A, Ben Saad H, Bkhairia I, Ktari N, Naifar M, Boudawara O, Droguet M, Magné C, Nasri M, Ben Amara I (2019) Cardiotoxicity and myocardial infarction-associated DNA damage induced by thiamethoxam in vitro and in vivo: protective role of Trigonella foenum-graecum seed-derived polysaccharide. Environ Toxicol 34:271–282. https://doi.org/10.1002/TOX.22682

    Article  CAS  PubMed  Google Scholar 

  26. Yan SH, Wang JH, Zhu LS, Chen AM, Wang J (2016) Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio rerio) livers. Environ Toxicol 31:2006–2015. https://doi.org/10.1002/TOX.22201

    Article  CAS  PubMed  Google Scholar 

  27. Maienfisch P, Gsell L, Rindlisbacher A (1999) Synthesis and insecticidal activity of CGA 293 343: a novel broad-spectrum insecticide. Pest Sci 55:351–435

    Article  CAS  Google Scholar 

  28. NRCNA (2011) Guide for the care and use of laboratory animals. National research council of the national academies. The National Academics Press, Washington

    Google Scholar 

  29. Nassar AMKK, Salim YM, Malhat FM (2016) Assessment of pesticide residues in human blood and effects of occupational exposure on hematological and hormonal qualities. Pakistan J Biol Sci 19:95–105. https://doi.org/10.3923/pjbs.2016.95.105

    Article  Google Scholar 

  30. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  31. Taussky HH, Shorr E, Kurzmann G (1953) A microcolorimetric method for the determination of inorganic phosohorus. J Biol Chem 202:675–685. https://doi.org/10.1016/S0021-9258(18)66180-0

    Article  CAS  PubMed  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  33. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  34. Schmid W (1976) The micronucleus test for cytogenetic analysis. In: Hollaender A (ed) Chemical mutagens. Springer, Boston, pp 31–53. https://doi.org/10.1007/978-1-4684-0892-8_2

    Chapter  Google Scholar 

  35. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/JCB.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. SAS (2016) Statistical analysis system. Version 9.3

  37. Shahjahan M, Islam MJ, Hossain MT, Mishu MA, Hasan J, Brown C (2022) Blood biomarkers asdiagnostic tools: An overview of climate-driven stress responses in fish. Sci Total Environ 843:156910

    Article  CAS  PubMed  Google Scholar 

  38. Benjamin MM (1978) Outline of veterinary clinical pathology. Iowa State University Press

  39. Hataba AA, Keshta AT, Mead H, El-Shafey N (2014) Hematological, Biochemical and Histologicalalterations induced by oral administration of Thiamethoxam and Acetamiprid in male rats. Biochem Lett 10(1):113–125

    Article  Google Scholar 

  40. Nassar AMK (2016) Acetylcholinesterase: a universal toxicity biomarker. J Agric Env Sci 15:28

    Google Scholar 

  41. Abu TM (2005) Adverse impact of insecticides on the health of Palestinian farm workers in the Gaza strip: a hematologic biomarker study. Int J Occup Environ Health 11:144–149. https://doi.org/10.1179/oeh.2005.11.2.144

    Article  Google Scholar 

  42. Smina AH, Samira B, Mohamed D, Houria B (2016) Evaluation of acetylcholinesterase, glutathione S-transferase and catalase activities in the land snail Helix aspersa exposed to thiamethoxam. J Ent Zool 4:369–374

    Google Scholar 

  43. Umar AM, Aisami A (2020) Acetylcholinesterase enzyme (AChE) as a biosensor and biomarker for pesticides: a mini review. Bull Environ Sci Sustain Manag 4:7–12

    Article  Google Scholar 

  44. Dhananjayan V, Ravichandran B, Anitha N, Rajmohan H (2012) Assessment of acetylcholinesterase and butyrylcholinesterase activities in blood plasma of agriculture workers. Indian J Occup Environ Med 16:127. https://doi.org/10.4103/0019-5278.111755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Demirci Ö, Güven K, Asma D, Öğüt S, Uğurlu P (2018) Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicol Environ Saf 147:749–758

    Article  CAS  PubMed  Google Scholar 

  46. Serafini S, de Freitas Souza C, Baldissera MD, Baldisserotto B, Segat JC, Baretta D, Zanella R, da Silva AS (2019) Fish exposed to water contaminated with eprinomectin show inhibition of the activities of AChE and Na+/K+-ATPase in the brain, and changes in natural behavior. Chemosphere 223:124–130

    Article  CAS  PubMed  Google Scholar 

  47. Temiz Ö, Kargın D (2024) Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. Environ Toxicol Pharmacol 104377

  48. Thaker J (1996) Effects of chromium(VI) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes. Toxicology 112:237–244. https://doi.org/10.1016/0300-483X(96)86481-X

    Article  CAS  PubMed  Google Scholar 

  49. Vasić V, Momić T, Petković M, Krstić D (2008) Na+, K+-ATPase as the target enzyme for organic and inorganic compounds. Sensors 8:8321–8360. https://doi.org/10.3390/s8128321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Čolović MB, Vasić VM, Avramović NS, Gajić MM, Djurić DM, Krstić DZ (2015) In vitro evaluation of neurotoxicity potential and oxidative stress responses of diazinon and its degradation products in rat brain synaptosomes. Toxicol Lett 233:29–37. https://doi.org/10.1016/j.toxlet.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  51. Comoglio L, Amin O, Roque A, Betancourt-Lozano M, Anguas D, Haro BM (2005) Evaluation of sublethal biomarkers in Litopenaeus vannamei on foodborne exposure to methyl parathion. Ecotoxicol Environ Saf 62:66–74. https://doi.org/10.1016/j.ecoenv.2004.10.006

    Article  CAS  PubMed  Google Scholar 

  52. Ma J, Zhu J, Wang W, Ruan P, Rajeshkumar S, Li X (2019) Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. Environ Pollut 252:1288–1300. https://doi.org/10.1016/j.envpol.2019.06.040

    Article  CAS  PubMed  Google Scholar 

  53. Reddy AN, Venugopal NBRK, Reddy SLN (1992) Effect of endosulfan 35 EC on ATPases in the tissues of a freshwater field crab Barytelphusa guerini. Bull Environ Contam Toxicol 48:216–222. https://doi.org/10.1007/BF00194374/METRICS

    Article  CAS  PubMed  Google Scholar 

  54. Parvez S, Sayeed I, Raisuddin S (2006) Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent. Ecotoxicol Environ Saf 65:62–66. https://doi.org/10.1016/j.ecoenv.2005.07.010

    Article  CAS  PubMed  Google Scholar 

  55. Uçkun M, Özmen M (2021) Evaluating multiple biochemical markers in Xenopus laevis tadpoles exposed to the pesticides thiacloprid and trifloxystrobin in single and mixed forms. Environ Toxicol Chem 40:2846–2860. https://doi.org/10.1002/etc.5158

    Article  CAS  PubMed  Google Scholar 

  56. Wang YYL, Cai Y-E, Kazmi SSUH, Yang J, Wang Y, Li P, Liu W, Wang Z (2023) Temperature-dependent effects of neonicotinoids on the embryonic development of zebrafish (Danio rerio). Front Mar Sci 9:1101737

    Article  Google Scholar 

  57. Yang D, Zhang X, Yue L, Hu H, Wei X, Guo Q, Zhang B, Fan X, Xin Y, Oh Y, Gu N (2021) Thiamethoxam induces nonalcoholic fatty liver disease in mice via methionine metabolism disturb via nicotinamide N-methyltransferase overexpression. Chemosphere 273:129727. https://doi.org/10.1016/j.chemosphere.2021.129727

    Article  CAS  PubMed  Google Scholar 

  58. Jacobsen-Pereira CH, dos Santos CR, Troina Maraslis F, Pimentel L, Feijó AJL, Iomara Silva C, de Medeiros GS, Costa Zeferino R, Curi Pedrosa R, Weidner Maluf S (2018) Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol Environ Saf 148:177–183. https://doi.org/10.1016/j.ecoenv.2017.10.004

    Article  CAS  Google Scholar 

  59. Kocaman AY, Topaktaş M (2007) In vitro evaluation of the genotoxicity of acetamiprid in human peripheral blood lymphocytes. Environ Mol Mutagen 48:483–490. https://doi.org/10.1002/EM.20309

    Article  CAS  PubMed  Google Scholar 

  60. Muranli FDG, Rasgele PG, Kekecoglu M, Kanev M, Ozdemir K (2015) Potential genotoxicity of acetamiprid and propineb singly or in combination in cultured human peripheral blood lymphocytes by using MN assay. Fresen Environ Bull 24:3947–3955

    CAS  Google Scholar 

  61. Zhu L, Li W, Zha J, Li N, Wang Z (2019) Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): docking study, hormone levels, histology, and transcriptional responses. Ecotoxicol Environ Saf 185:109683. https://doi.org/10.1016/j.ecoenv.2019.109683

    Article  CAS  PubMed  Google Scholar 

  62. Pan Y, Chang J, Wan B, Liu Z, Yang L, Xie Y, Hao W, Li J, Xu P (2022) Integrative analysis of transcriptomics and metabolomics reveals the hepatotoxic mechanism of thiamethoxam on male Coturnix japonica. Environ Pollut 293:118460. https://doi.org/10.1016/J.ENVPOL.2021.118460

    Article  CAS  PubMed  Google Scholar 

  63. Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000

    Article  CAS  Google Scholar 

  64. Jaballi I, Ben Saad H, Bkhairia I, Kammoun I, Droguet M, Magné C, Boudawara T, Kallel C, Nasri M, Hakim A, Ben Amara I (2017) Increasing maneb doses induces reactive oxygen species overproduction and nephrotoxicity in adult mice. Toxicol Mech Methods 27:382–393. https://doi.org/10.1080/15376516.2017.1300617

    Article  CAS  PubMed  Google Scholar 

  65. Demsia G, Vlastos D, Goumenou M, Matthopoulos DP (2007) Assessment of the genotoxicity of imidacloprid and metalaxyl in cultured human lymphocytes and rat bone-marrow. Mutat Res/Genet Toxicol Environ Mutagen 634:32–39

    Article  CAS  Google Scholar 

  66. Günal AÇ, Erkmen B, Paçal E, Arslan P, Yildirim Z, Erkoç F (2019) Sub-lethal effects of imidacloprid on Nile Tilapia (Oreochromis niloticus). Water Air Soil Pollut 231:1–10. https://doi.org/10.1007/s11270-019-4366-8

    Article  CAS  Google Scholar 

  67. Kataria SK, Chhillar AK, Kumar A, Tomar M, Malik V (2016) Cytogenetic and hematological alterations induced by acute oral exposure of imidacloprid in female mice. Drug Chem Toxicol 39:59–65

    Article  CAS  PubMed  Google Scholar 

  68. Jia G, Wang P, Qiu J, Sun Y, Xiao Y, Zhou Z (2004) Determination of DNA with imidacloprid by a resonance light scattering technique at nanogram levels and its application. Anal Lett 37:1339–1354

    Article  CAS  Google Scholar 

  69. Katić A, Kašuba V, Kopjar N, Lovaković BT, Čermak AMM, Mendaš G, Micek V, Milić M, Pavičić I, Pizent A (2021) Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem Biol Interact 338:109287

    Article  PubMed  Google Scholar 

  70. Li S, Cao Y, Pan Q, Xiao Y, Wang Y, Wang X, Li X, Li Q, Tang X, Ran B (2021) Neonicotinoid insecticides triggers mitochondrial bioenergetic dysfunction by manipulating ROS-calcium influx pathway in the liver. Ecotoxicol Environ Saf 224:112690. https://doi.org/10.1016/j.ecoenv.2021.112690

    Article  CAS  PubMed  Google Scholar 

  71. Sesso A, Belizário JE, Marques MM, Higuchi ML, Schumacher RI, Colquhoun A, Ito E, Kawakami J (2012) Mitochondrial swelling and incipient outer membrane rupture in preapoptotic and apoptotic cells. Anat Rec 295:1647–1659. https://doi.org/10.1002/ar.22553

    Article  CAS  Google Scholar 

  72. Abdelmeguid N, Ramadan AA, El-Khatib AM (1990) Effects of split fast neutron doses on the liver cells of albino Swiss mice. Folia Morphol (Praha) 38

  73. Montisano DF, Cascarano J, Pickett CB, James TW (1982) Association between mitochondria and rough endoplasmic reticulum in rat liver. Anat Rec 203:441–450. https://doi.org/10.1002/ar.1092030403

    Article  CAS  PubMed  Google Scholar 

  74. Saleh AA (1993) Histopathological effect of three synthetic pyrethroids on lung and kidney of rat. J Agric Sci Mansoura Univ Egypt 18:288–295

    Google Scholar 

  75. El-Hawashy N, Khedr F (2001) Histopathological effects of calciferol on albino rat, Rattus norvegicus. J Agric Sci Mansoura Univer, Egypt 26:8029–8046

    Google Scholar 

  76. Directives (2010) Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Union 276(33):75–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam El Din H. Abdelhafez.

Ethics declarations

Conflict of interest

Atef M. K. Nassar, Hossam El Din H. Abdelhafez, Yehia M. Salim, Khaled Y. Abdel‑Halim declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval studies in animals

The Institutional Animal Care and Use Committee of the Faculty of Agriculture, Damanhur University, approved the animal care ethics (No DUFA-2022-4), and the standard international guidelines for animal care were followed according to the National Institutes of Health Guide and the EU Directive 2010/63/EU for the Care and Use of Laboratory Animals [28, 76].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, A.M.K., Abdelhafez, H.E.D.H., Salim, Y.M. et al. Cytotoxicity of short-term exposure to sublethal dose of the insecticide thiamethoxam to male albino rats. Toxicol. Environ. Health Sci. (2024). https://doi.org/10.1007/s13530-024-00210-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13530-024-00210-2

Keywords

Navigation