Skip to main content
Log in

Anthelmintic activity of biosynthesized zinc oxide nanoparticles using Typha domingensis pers. against Echinococcus granulosus protoscoleces

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Background

Over the past decade, the green synthesis of metal and metal oxide nanoparticles has attracted significant attention due to their simplicity, eco-friendliness, availability and nontoxicity. Furthermore, metal nanoparticles are being investigated for a wide range of applications due to their promising features.

Aim

The present study aims to evaluate the anthelmintic activity of biosynthesised zinc oxide nanoparticles using Typha domingensis flower extract.

Methods

The characterization of synthesized ZnO NPs was confirmed using energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet–visible (UV–Vis) spectrometry. Also, their protoscolicidal and haemocompatibility properties were tested.

Results

The creation of ZnO NPs was confirmed by the presence of an absorption peak at 370 nm in the UV–Vis spectrum. Images of XRD, SEM and EDX proved the crystallinity, and the hexagonal-wurtzite structure of the ZnO NPs with a crystallographic size of 60.4 nm, as well as validating the element purity. The ZnO NPs band gap was estimated at 3.29 eV. The results of this study demonstrated that ZnO NPs have potent protoscolicidal effects at all concentrations, with the highest scolicidal activity at 40 µg /ml resulting in a 100% mortality rate after 30 min of exposure. The treated protoscolices displayed viability loss along with many morphological and ultrastructural changes.

Conclusion

This study reports an effective green synthesis of ZnO NPs with strong scolicidal potential. Additionally, ZnO NPs appeared haemocompatible and had low toxicity towards erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Abu Hajleh MN, Abu-Huwaij R, AL-Samydai A, Al-Halaseh LK, Al-Dujaili EA (2021) The revolution of cosmeceuticals delivery by using nanotechnology: a narrative review of advantages and side effects. J Cosmet Dermatol. https://doi.org/10.1111/jocd.14441

  2. Achouri F, Corbel S, Aboulaich A, Balan L, Ghrabi A, Ben Said M, Schneider R (2014) Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J Phys Chem Solids 2014(75):1081–1087. https://doi.org/10.1016/j.jpcs.2014.05.013

    Article  CAS  Google Scholar 

  3. Ahmed MH, Hassan A, Molnár J (2021) The role of micronutrients to support immunity for COVID-19 prevention. Rev Bras Farmacogn 31(4):361–374. https://doi.org/10.1007/s43450-021-00179-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmed MH, Vasas D, Hassan A, Molnár J (2022) The impact of functional food in prevention of malnutrition. PharmaNutrition 19:100288. https://doi.org/10.1016/j.phanu.2022.100288

    Article  CAS  Google Scholar 

  5. Albi A, Baudin F, Matmar M, Archambeau D, Ozier Y (2002) Severe hypernatremia after hypertonic saline irrigation of hydatid cysts. Anesth Analg 2002(95):1806–1808. https://doi.org/10.1097/00000539-200212000-00062

    Article  Google Scholar 

  6. Almohammed HI, Alkhaibari AM, Alanazi AD (2022) Antiparasitic effects of Elettaria cardamomum L essential oil and its main compounds, 1–8 Cineole alone and in combination with albendazole against Echinococcus granulosus protoscoleces. Saudi J Biol Sci 29(4):2811–2818. https://doi.org/10.1016/j.sjbs.2022.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ASTM (2013) Standard test method for analysis of hemolytic properties of nanoparticles. ASTM International West Conshohocken, PA. https://www.astm.org/e2524-22.html

  8. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/C4RA12784F

    Article  CAS  Google Scholar 

  9. Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S (2013) Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci 58:173–181. https://doi.org/10.1016/j.aoas.2013.07.002

    Article  Google Scholar 

  10. Bokuniaeva AO, Vorokh AS (2019) Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J Phys Conf Ser 1410:012057. https://doi.org/10.1088/1742-6596/1410/1/012057

    Article  CAS  Google Scholar 

  11. Cheraghipour K, Azarhazine M, Zivdari M, Beiranvand M, Shakib P, Rashidipour M, Mardanshah O, Mohaghegh MA, Marzban A (2022) Evaluation of scolicidal potential of salicylate coated zinc nanoparticles against Echinococcus granulosus protoscoleces. Exp Parasitol 246:108456. https://doi.org/10.1016/j.exppara.2022.108456

    Article  CAS  Google Scholar 

  12. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S (2022) Gsreen metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol 10:874742. https://doi.org/10.3389/fbioe.2022.874742

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hamad SM, Shnawa BH, Jalil PJ, Ahmed MH (2022) Assessment of the therapeutic efficacy of silver nanoparticles against secondary cystic echinococcosis in BALB/c mice. Surfaces 5(1):91–112. https://doi.org/10.3390/surfaces5010004

    Article  CAS  Google Scholar 

  14. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 23(29):295103. https://doi.org/10.1088/0957-4484/19/29/295103

    Article  CAS  Google Scholar 

  15. Hu H, Kang J, Chen R, Mamuti W, Wu G, Yuan W (2011) Drug-induced apoptosis of Echinococcus granulosus protoscoleces. Parasitol Res 109(2):453–459. https://doi.org/10.1007/s00436-011-2276-9

    Article  PubMed  Google Scholar 

  16. Jalil PJ, Shnawa BH, Hamad SM (2021) Silver nanoparticles: green synthesis, characterization, blood compatibility and protoscolicidal efficacy against Echinococcus granulosus. Pak Vet J 41:393–399. https://doi.org/10.29261/pakvetj/2021.039

  17. Lashin I, Hasanin M, Hassan S, Hashem A (2021) Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01873-4

    Article  Google Scholar 

  18. Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A (2021) Hemolysis of human erythrocytes by Argovit™ AgNPs from healthy and diabetic donors: an in vitro study. Materials 14:2792. https://doi.org/10.3390/ma14112792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohd Yusof H, Mohamad R, Zaidan UH (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10:57. https://doi.org/10.1186/s40104-019-0368-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller KH, Kulkarni J, Motskin M, Goode AW, Peter NS, Jeremy PRM, Porter AE (2010) pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 2010(4):6767–6779. https://doi.org/10.1021/nn101192z

    Article  CAS  Google Scholar 

  21. Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, Alam MZ, Tabrez S, Pugazhendhi A, Ismail IM (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C 89:429–443. https://doi.org/10.1016/j.msec.2018.03.035

    Article  CAS  Google Scholar 

  22. Pérez-Serrano J, Casado N, Rodriguez-Caabeiro F (1994) The effects of albendazole and albendazole sulphoxide combination-therapy on Echinococcus granulosus in vitro. Int J Parasitol 24:219–224. https://doi.org/10.1016/0020-7519(94)90029-9

    Article  PubMed  Google Scholar 

  23. Rahman MM, Chakrabarty JK, Muhit MA, Dash PR (2014). Evaluation of analgesic activity of the different fractions of Typha elephantina Roxb. Int J Pharmacogn 1:380–383. https://doi.org/10.13040/IJPSR.0975-8232

  24. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010(7):1063–1077. https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  Google Scholar 

  25. Rawal TB, Smith MD, Ozcan A, Smith JC, Tetard L, Santra S, Petridis L (2020) Role of capping agents in the synthesis of salicylate-capped zinc oxide nanoparticles. ACS Appl Nano Mater 3(10):9951–9960. https://doi.org/10.1021/acsanm.0c01972

    Article  CAS  Google Scholar 

  26. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource Efficient Technol 3:459–465. https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  27. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013(11):26. https://doi.org/10.1186/1477-3155-11-26

    Article  CAS  Google Scholar 

  28. Sghaier MB, Skandrani I, Nasr N, Franca M-GD, Chekir-Ghedira L, Ghedira K (2011) Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: a structure–activity relationship study. Environ Toxicol Pharmacol 32(3):336–348. https://doi.org/10.1016/j.etap.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  29. Shi H, Lei Y, Wang B, Xing G, Lv H, Jiang Y (2016) Protoscolicidal effects of chenodeoxycholic acid on protoscoleces of Echinococcus granulosus. Exp Parasitol 2016(167):76–82. https://doi.org/10.1016/j.exppara.2016.05.004

    Article  CAS  Google Scholar 

  30. Shnawa BH , Al-Ali S J , Swar SO. (2021). Nanoparticles as a new approach for treating hydatid cyst disease. Veterinary Pathobiology and Public Health, Unique Scientific Publishers, Faisalabad. https://doi.org/10.47278/book.vpph/2021.015

  31. Shnawa BH, Hamad SM, Barzinjy AA, Kareem PA, Ahmed MH (2021) Scolicidal activity of biosynthesized zinc oxide nanoparticles by Mentha longifolia L leaves against Echinococcus granulosus protoscolices. Emergent Mater. https://doi.org/10.1007/s42247-021-00264-9

    Article  Google Scholar 

  32. Shnawa BH, Jalil PJ, Aspoukeh PK, Mohammed DA, Biro DM (2022) Protoscolicidal and biocompatibility properties of biologically fabricated zinc oxide nanoparticles using Ziziphus spina-christi leaves. Pak Vet J 42(4):517–525. https://doi.org/10.29261/pakvetj/2022.058

    Article  CAS  Google Scholar 

  33. Shnawa BH, Gorony SM, Khalid KM (2017). Efficacy of Cyperus rotundus rhizomes-tubers extracts against protoscoleces of Echinococcus granulosus. World J Pharm Res. https://doi.org/10.20959/wjpr20178-9053

  34. Siles-Lucas M, Casulli A, Cirilli R, Carmena D (2018) Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: compounds and therapeutic targets. PLoS Negl Trop Dis 12:e0006422. https://doi.org/10.1371/journal.pntd.0006422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotech Sci Appl 4:95. https://doi.org/10.2147/NSA.S19419

    Article  CAS  Google Scholar 

  36. Smyth J, Barrett N (1980) Procedures for testing the viability of human hydatid cysts following surgical removal, especially after chemotherapy. Trans R Soc Trop Med Hyg 74:649–652. https://doi.org/10.1016/0035-9203(80)90157-1

    Article  CAS  PubMed  Google Scholar 

  37. Taaca KLM, Vasquez MR (2018) Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite- chitosan composites. Appl Surf Sci 432:324–331. https://doi.org/10.1016/j.apsusc.2017.04.034

    Article  CAS  Google Scholar 

  38. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Notices 2012:1–6. https://doi.org/10.5402/2012/372505

    Article  CAS  Google Scholar 

  39. UNESCO,2016. The Ahwar of Southern Iraq: refuge of biodiversity and the relict landscape of the mesopotamian cities. UNESCO https://whc.unesco.org/en/list/1481/

  40. Verma VC, Gangwar M, Nath G (2014) Osmoregulatory and tegumental ultrastructural damages to protoscoleces of hydatid cysts Echinococcus granulosus induced by fungal endophytes. J Parasit Dis 38:432–439. https://doi.org/10.1007/s12639-013-0271-z

    Article  PubMed  Google Scholar 

  41. Wang J, Lee JS, Kim D, Zhu L (2017) Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl Mater Interfaces 9(46):39971–39984. https://doi.org/10.1021/acsami.7b11219

    Article  CAS  PubMed  Google Scholar 

  42. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  PubMed  Google Scholar 

  43. Yi G, Li X, Yuan Y, Zhang Y (2019) Redox active Zn/ZnO duo generating superoxide (̇O2−) and H2O2 under all conditions for environmental sanitation. Environ Sci Nano 6:68–74. https://doi.org/10.1039/C8EN01095A

    Article  CAS  Google Scholar 

  44. Zak AK, Majid WA, Mahmoudian M, Darroudi M, Yousefi R (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv Powder Technol 24:618–624. https://doi.org/10.1016/j.apt.2012.11.008

    Article  CAS  Google Scholar 

  45. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645. https://doi.org/10.2174/1566524013666131111130058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowlegement

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

BS and MA designed the study. PJ, BA and KH performed the research method. PJ, VF and BS analysed the data. BS and MA wrote the paper. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mukhtar H. Ahmed.

Ethics declarations

Conflict of Interest

Bushra H. Shnawa, Parwin J. Jalil, Vinos M. Faris, Bilal A. Abdulla, Kawa J. Hamad, Mukhtar H. Ahmed declare that we have no conflict of interest.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by scientific committee of Soran University [1/1/178 on 15 November 2021].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnawa, B.H., Jalil, P.J., Faris, V.M. et al. Anthelmintic activity of biosynthesized zinc oxide nanoparticles using Typha domingensis pers. against Echinococcus granulosus protoscoleces. Toxicol. Environ. Health Sci. 15, 411–423 (2023). https://doi.org/10.1007/s13530-023-00192-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00192-7

Keywords

Navigation