Skip to main content
Log in

Effect of subacute treatment with bisphenol A on oxidative stress biomarkers and lipid peroxidation in Gambusia affinis mosquitofish

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Considerable environmental pollution is commonly caused by plastics in marine ecosystems, and as plastics breakdown, many toxic chemicals, including polycarbonate and bisphenol-A, are released, adversely affecting the health of marine organisms. In this regard, the present work was devoted to study the toxic effect of bisphenol A (BPA), an endocrine disruptor, in the freshwater crucian fish Gambusia affinis.

Methods

The acute toxicity of BPA was examined in adult male G. affinis with two lethal concentrations, LC25 and LC50, in which the confidence intervals were determined after 24, 48, 72, and 96 h of the exposure period. The oxidative stress markers, including the enzymatic activity of catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AchE), and the contents of malondialdehyde (MDA) and reduced glutathione (GSH) in the hepatopancreas of control and treated fish were determined for 60 days. In addition, the study was included histopathological examinations of testes.

Result

The toxic effect of BPA exposure increased with exposure time and concentration. Chronic exposure to BPA markedly decreased the levels of reduced glutathione (GSH) and the enzymatic activity of brain acetylcholinesterase (AchE), and in contrast, CAT and GST activity and MDA levels were significantly increased.

Conclusions

BPA-exposed fish exhibited severe concentration-dependent acute toxicity, as evidenced by the induction of oxidative injuries, disruption of the neurotransmission process, and subsequently decreased motor activity and alterations in spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Caballero-Gallardo K, Olivero-Verbel J, Freeman J (2016) Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the zebrafish model. Curr Genomics 17(6):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pironti C, Ricciardi M, Proto BPM, Montano L, Motta O (2021) Endocrine-disrupting compounds: an overview on their occurrence in the aquatic environment and human exposure. Water 13(10):1347

    Article  CAS  Google Scholar 

  3. Martínez R, Navarro-Martín L, Van Antro M, Fuertes I, Casado M, Barata C, Piña B (2020) Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage. Chemosphere 246:125704

    Article  PubMed  Google Scholar 

  4. United States Environmental Protection Agency (2010). Decontamination research and development conference. U.S. environmental protection agency, Washington, DC, EPA/600/R-11/052, 2011

  5. Schwarzenbach RP, Egli T, Hofstetter Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136

    Article  Google Scholar 

  6. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34

    Article  CAS  PubMed  Google Scholar 

  7. Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW (2015) Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13(3):1559325815598308

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  PubMed  Google Scholar 

  9. Faheem M, Bhandari RK (2021) Detrimental effects of bisphenol compounds on physiology and reproduction in fish: a literature review. Environ Toxicol Pharmacol 81:103497

    Article  CAS  PubMed  Google Scholar 

  10. Preethi S, Sandhya K, Lebonah DE, Prasad CV, Sreedevi B, Chandrasekhar K, Kumari JP (2014) Toxicity of bisphenol a on humans: a review. Int Lett Nat Sci 27(2014):32–46

    Google Scholar 

  11. Tohmé M, Prud’homme SM, Boulahtouf A, Samarut E, Brunet F, Bernard L, Laudet V (2014) Estrogen-related receptor γ is an in vivo receptor of bisphenol A. The FASEB J 28(7):3124–3133

    Article  PubMed  Google Scholar 

  12. Faheem M, Jahan N, Lone KP (2016) Histopathological effects of bisphenol-A on liver, kidneys and gills of Indian major carp Catla catla (Hamilton 1822). J Anim Plant Sci 26(2):514–522

    CAS  Google Scholar 

  13. Barboza LGA, Cunha SC, Monteiro C, Fernandes JO, Guilhermino L (2020) Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J Hazard Mater 393:122419

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q-F, Li Y-W, Liu Z-H, Chen Q-L (2016) Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat Toxicol 177:417–424

    Article  CAS  PubMed  Google Scholar 

  15. Akram R, Iqbal R, Hussain R, Jabeen F, Ali M (2021) Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. Environ Pollut 268:115896

    Article  CAS  PubMed  Google Scholar 

  16. Mukherjee U, Samanta A, Biswas S, Das S, Ghosh S, Mandal DK, Maitra S (2020) Bisphenol A-induced oxidative stress, hepatotoxicity and altered estrogen receptor expression in Labeo bata: impact on metabolic homeostasis and inflammatory response. Ecotoxicol Environ Saf 202:110944

    Article  CAS  PubMed  Google Scholar 

  17. Bustos-Obregon E, Vargas Á (2010) Chronic toxicity bioassay with populations of the crustacean Artemia salina exposed to the organophosphate diazinon. Biol Res 43(3):357–362

    Article  PubMed  Google Scholar 

  18. Stara A, Pagano M, Capillo G, Fabrello J, Sandova M, Vazzana I (2020) Faggio C (2020a) Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. Sci Total Environ 700:134914

    Article  CAS  PubMed  Google Scholar 

  19. Faheem M, Lone KP (2017) Oxidative stress and histopathologic biomarkers of exposure to bisphenol-A in the freshwater fish Ctenopharyngodon idella. Braz J Pharm Sci. https://doi.org/10.1590/s2175-97902017000317003

    Article  Google Scholar 

  20. Sharma P, Chadha P (2021) Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctatus after acute exposure. Saudi J Biol Sci 28(8):4738–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamed HS, Abdel-Tawwab M (2017) Ameliorative effect of propolis supplementation on alleviating bisphenol-A toxicity: growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Comp Biochem Physiol C: Toxicol Pharmacol 202:63–69

    CAS  PubMed  Google Scholar 

  22. Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145

    Article  CAS  PubMed  Google Scholar 

  23. Epa US (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms; epa-821-r-02-012; us environmental protection agency: washington. DC, USA

    Google Scholar 

  24. Diaz-Sosa VR, Tapia-Salazar M, Wanner J, Cardenas-Chavez DL (2020) Monitoring and ecotoxicity assessment of emerging contaminants in wastewater discharge in the City of Prague (Czech Republic). Water 12(4):1079

    Article  CAS  Google Scholar 

  25. Bartoskova M, Dobsikova R, Stancova V et al (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol Lett 34(2):102–108

    CAS  PubMed  Google Scholar 

  26. Abdel-Tawwab M, Hamed HS (2018) Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia Oreochromis niloticus (L.). J Appl Ichthyolo 34(5):1117–1125

    Article  CAS  Google Scholar 

  27. Fiorino E, Sehonova P, Plhalova L, Blahova J, Svobodova Z, Faggio C (2018) Effects of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio. Environ Sci Pollut Res 25(9):8542–8549

    Article  CAS  Google Scholar 

  28. Baird SF and Girard CH (1853) Descriptions of new species of fishes collected by Mr. John H. Clark, on the US and Mexican Boundary Survey, under Lt. Col. Jas. D. Graham. In: Proceedings of the Academy of Natural Sciences of Philadelphia.

  29. Bao S, He C, Ku P, Xie M, Lin J, Lu S (2021) Nia X (2021) Effects of triclosan on the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway in mosquitofish (Gambusia affinis). Aquat Toxicol 230:105679

    Article  CAS  PubMed  Google Scholar 

  30. Song X, Wang X, Li X, Yan X, Liang Y, Huang Y, Huang L (2021) Zeng H (2021) Histopathology and transcriptome reveals the tissue-specific hepatotoxicity and gills injury in mosquitofish (Gambusia affinis) induced by sublethal concentration of triclosan. Ecotoxicol Environ Saf 220:112325

    Article  CAS  PubMed  Google Scholar 

  31. Yazdani M, Andresen AMS, Gjøen T (2016) Short-term effect of bisphenol-a on oxidative stress responses in Atlantic salmon kidney cell line: a transcriptional study. Toxicol Mech Methods 26(4):295–300

    Article  CAS  PubMed  Google Scholar 

  32. Faheem M, Khaliq S, Lone KP (2019) Effect of bisphenol-A on serum biochemistry and liver function in the freshwater fish. Catlacatla Pak Vet J 39(1):1–5

    Google Scholar 

  33. Wu NC, Seebacher F (2020) Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: a meta-analysis. Glob Change Biol 26(7):3821–3833

    Article  Google Scholar 

  34. Huang GY, Liu YS, Liang YQ, Shi WJ, Hu LX, Tian F, Chen J, Ying GG (2016) Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. Sci Total Environ 563:273–281

    Article  PubMed  Google Scholar 

  35. Afzal G, Ahmad HI, Hussain R, Saeed S, Jamal A, Kiran S, Hussain T, Saeed S, Nisa M (2022) Bisphenol A induces histopathological, hematobiochemical alterations oxidative stress and genotoxicity in common carp (Cyprinus carpio L.). Oxid Med Cell Longev. https://doi.org/10.1155/2022/5450421

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kankaya E, Kaptaner B, Dogan A, Çelik İ (2015) Toxicity of bisphenol a during the early life stages of Chalcalburnus tarichi (Pallas, 1811). Fresenius Environ Bull 24:977–985

    CAS  Google Scholar 

  37. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189

    Article  CAS  PubMed  Google Scholar 

  38. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  39. Qiu W, Chen J, Li Y, Chen Z, Jiang L, Yang M, Wu M (2016) Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio). Ecotoxicol Environ Saf 130:93–102

    Article  CAS  PubMed  Google Scholar 

  40. Seoane M, Cid Á, Herrero C, Esperanza M (2021) Comparative acute toxicity of benzophenone derivatives and bisphenol analogues in the Asian clam Corbicula fluminea. Ecotoxicology 30(1):142–153

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Shen H, Wang X et al (2004) Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55(2):167–174

    Article  CAS  PubMed  Google Scholar 

  42. Aykut H, Kaptaner B (2021) In vitro effects of bisphenol F on antioxidant system indicators in the isolated hepatocytes of rainbow trout (Oncorhyncus mykiss). Mol Biol Rep 48(3):2591–2599

    Article  CAS  PubMed  Google Scholar 

  43. Ali I, Liu B, Farooq MA, Islam F, Azizullah A, Yu SuW, C, Gan, Y, (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicol Environ Saf 124:277–284

    Article  CAS  PubMed  Google Scholar 

  44. Hamed HS, Ali RM, Shaheen AA, Hussein NM (2021) Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of Bisphenol-A-intoxicated female African catfish. Comp Biochem Physiol C: Toxicol Pharmacol 248:109104

    CAS  PubMed  Google Scholar 

  45. Kaya Ö, Kaptaner B (2016) Antioxidant defense system parameters in isolated fish hepatocytes exposed to bisphenol A- effect of vitamin C. Acta BiologicaHungarica 67(3):225–235

    CAS  Google Scholar 

  46. Uçkun M (2022) Assessing the toxic effects of bisphenol, A in consumed crayfish Astacus leptodactylus using multi biochemical markers. Environ Sci Pollut Res 29(17):25194–25208

    Article  Google Scholar 

  47. Golombieski JI, Marchesan E, Camargo ER, Salbego J, Baumart JS, Loro VL, de Oliveira Machado SL, Zanella R, Baldisserotto B (2008) Acetylcholinesterase enzyme activity in carp brain and muscle after acute exposure to diafuran. Scientia Agricola 65:340–345

    Article  CAS  Google Scholar 

  48. Liu H, Yi M, Shi X, Liang P, Gao X (2007) Substrate specificity of brain acetylcholinesterase and its sensitivity to carbamate insecticides in Carassius auratus. Fish Physiol Biochem 33(1):29–34

    Article  Google Scholar 

  49. APHA-AWWA-WEF (1998) In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the estimation of water and waste water, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

  50. Buege JA, Aust SD (1984) Microsomal lipid peroxidation. Methods Enzymol 105:302–310

    Google Scholar 

  51. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169

    Article  CAS  PubMed  Google Scholar 

  52. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  53. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  54. Bradford M (1976) A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  55. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  56. Hould R (1984) Methode de Fontana : Techniques d’histopathologie et de cytopathology. Maloine, Paris

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Fund for Scientific Research of Algeria DGSRTD and by the Ministry of Higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheireddine Ouali.

Ethics declarations

Conflict of interest

Rahma BELHAMRA, Lazhari TICHATI, Fouzia TREA, Kheireddine OUALI declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants. Animal care was carried out in accordance with Badji Mokhtar-Annaba University animal care protocols.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhamra, R., Tichati, L., Trea, F. et al. Effect of subacute treatment with bisphenol A on oxidative stress biomarkers and lipid peroxidation in Gambusia affinis mosquitofish. Toxicol. Environ. Health Sci. 15, 61–72 (2023). https://doi.org/10.1007/s13530-022-00161-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00161-6

Keywords

Navigation