Skip to main content
Log in

The importance of toxic environmental substances in the development of thyroid cancer

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Thyroid cancer is the most common cancer (90%) of the endocrine system and is responsible for 0.5% of all cancer deaths. The incidence of thyroid cancer is thought to be rapidly and steadily increasing in recent decades. Recent studies have described thyroid cancer as the 4th most common cancer today, up from 14th in the early 1990s. This increase is mainly due to various environmental factors including: radiation, smoking, obesity, pollutants such as pesticides, phthalates, polychlorinated biphenyls, perfluorinated compounds, bromine flame retardants, perchlorates, nitrates and various elements such as metals, non-metals and metalloids. In particular, some metals such as iron, copper, cadmium, lead, vanadium, chromium, manganese and nickel have a positive effect, while others such as zinc and magnesium have a negative correlation with thyroid cancer. Other metals such as molybdenum, tin and cobalt appear to increase the incidence of thyroid cancer in combination, while sodium, mercury, aluminum and silver have no evidence of thyroid carcinogenicity. Of the non-metals, iodine and selenium deficiency are associated with carcinogenic effects on the thyroid, while there is no information on any phosphorus-relative activity. Boron belonging to the metalloids is considered a goitrogenic element and probably increases the incidence of thyroid cancer when it acts in combination with cadmium, molybdenum, taken in small non-toxic doses, for a long time. Finally, air pollution has been studied. It has been found that originating from gaseous waste is associated with an increased incidence of cancer in various anatomical areas, including the thyroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiore M, Conti GO, Caltabiano R et al (2019) Role of environmental emerging risk factors in thyroid cancer : a brief review. Int J Environ Res Public Health 16:1183–1192

    Article  Google Scholar 

  2. Dalles K, Kostoglou-Athanasiou I (2007) Thyroid cancer. Archives of Hellenic Medicine 24:250–264

    Google Scholar 

  3. Haugen BR, Alexander EK, Bible KC et al (2016) American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  4. Araque KA, Gubbi S, Klubo-Gwiezdzinska J (2020) Updates on the Management of Thyroid Cancer. Horm Metab Res 52:562–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim H, Devesa SS, Sosa JA et al (2017) Trends in thyroid cancer incidence and mortality in the United States 1974–2013. JAMA 317:1338–1348

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nickel B, Tan T, Cvejic E, Baade P, McLeod DSA, Pandeya N, Youl P, McCaffery K, Jordan S (2019) Health-Related Quality of Life After Diagnosis and Treatment of Differentiated Thyroid Cancer and Association With Type of Surgical Treatment. JAMA Otolaryngol Head Neck Surg 145:231–238

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pellegriti G, Frasca F, Regalbuto C et al (2013) Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013:965212

    Article  PubMed  PubMed Central  Google Scholar 

  8. Howlader N, Noone A, Krapcho M et al (2013) SEER Cancer Statistics Review 1975–2010. Bethesda MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2010

  9. Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods. Int J Cancer 144:1941–1953

    Article  CAS  PubMed  Google Scholar 

  10. Colonna M, Uhry Z, Guizard AV et al (2015) Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol 39:511–518

    Article  CAS  PubMed  Google Scholar 

  11. McLeod DSA, Zhang L, Durante C, Cooper DS (2019) Contemporary Debates in Adult Papillary Thyroid Cancer Management. Endocr Rev 40:1481–1499

    Article  PubMed  Google Scholar 

  12. Aschebrook-Kilfoy B, Dellavalle CT, Purdue M et al (2015) Polybrominated diphenyl ethers and thyroid cancer and risk in the prostate, colorectal, lung, and ovarian cancer screening trial cohort. Am J Epidemiol 181:883–888

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luca E, Fici L, Ronchi A et al (2017) Intake of boron, cadmium, and molybdenum enhances rat thyroid cell transformation. J Exper Clin Cancer Res 36:1–9

    Article  Google Scholar 

  14. Pasha Q, Malik SA, Shah MH (2008) Statistical analysis of trace metals in the plasma of cancer patients versus controls. J Hazard Matr 153:1215–1221

    Article  CAS  Google Scholar 

  15. Saenko V, Ivanov V, Tsyb A et al (2011) The Chernobyl accident and its consequences. Clin Oncol (R Coll Radiol) 23:234–243

    Article  CAS  Google Scholar 

  16. American Cancer Society. Thyroid cancer detailed guide (2016)- Scharpf J, Tuttle M, Wong R, Ridge D, Smith R, Hartl D, Levine R, Randolph G (2016) Comprehensive management of recurrent thyroid cancer: an American Head and Neck Society consensus statement: AHNS consensus statement. Head Neck 38:1862–1869

    Article  Google Scholar 

  17. Stojsavljevic A, Rovcanin B, Krstic D et al (2019) Evaluation of trace metals in thyroid tissues: comparative analysis with benign and malignant thyroid diseases. Ecotoxicol Environ Saf 183:109479

    Article  CAS  PubMed  Google Scholar 

  18. Furukawa K, Preston D, Funamoto S et al (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 Years after exposure. Int J Cancer 132:1222–1226

    Article  CAS  PubMed  Google Scholar 

  19. UNSCEAR (United Nations, Committee on the Effects of Atomic Radiation) (2000) Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes. New York, United Nations

  20. Stefan A-I, Piciu A, Mesler A et al (2020) Pediatric thyroid cancer in Europe: an overdiagnosed condition ? A literature review. Diagnostics (Basel) 10:112

    Article  CAS  Google Scholar 

  21. Bridget-Sinnott Β, Elaine-Ron Ε, Schneider ΑΒ (2010) Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocrinol Rev 31:756–773

    Article  Google Scholar 

  22. Schwertheim S, Theurer S, Jastrow H et al (2019) New insights into intranuclear inclusions in thyroid carcinoma: association with autophagy and with BRAFV600E mutation. PLoS ONE 14:e0226199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goyal N, Camacho F, Mangano J, Goldenberg D (2015) Evaluating for a geospatial relationship between radon levels and thyroid cancer in Pennsylvania. Laryngoscope 125:E45–E49

    Article  PubMed  Google Scholar 

  24. Oakland C, Meliker JR (2018) County -level radon and incidence of female thyroid cancer in Iowa, New Jersey, and Wisconsin, USA. Toxics 6:17

    Article  PubMed Central  Google Scholar 

  25. CDC (2010) Smoking and tobacco Smoke. Atlanta: CDC http://www.cdc.gov/tobacco/data_statistics/sgr/2010/consumer_booklet/chemicals_smoke/.

  26. Mack WJ, Preston-Martin S, Maso LD et al (2003) A pooled analysis of case-control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea. Cancer Causes Control 14:773–785

    Article  PubMed  Google Scholar 

  27. Kitahara CM, Platz EA, Beane-Freeman LE et al (2012) Physical activity, diabetes. Cancer Causes Control 23:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marcello MA, Malandrino P, Almeida JFM et al (2014) The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 21:T235–T254

    Article  CAS  PubMed  Google Scholar 

  29. Ericsson UB, Lindgärde F (1991) Effects of cigarette smoking on thyroid function and the prevalence of goitre, thyrotoxicosis and autoimmune thyroiditis. J Inter Med 229:67–71

    Article  CAS  Google Scholar 

  30. Franceschi S, Preston-Martin S, Dal Maso L et al (1999) A pooled analysis of case-control studies of thyroid cancer. IV. Benign thyroid diseases. Cancer Causes Control 10:583–595

    Article  CAS  PubMed  Google Scholar 

  31. Aydin LY, Aydin Y, Besir FH et al (2011) Effect of smoking intensity on thyroid volume, thyroid nodularity and thyroid function: The Melen study. Minerva Endocrinol 36:273–280

    CAS  PubMed  Google Scholar 

  32. Malandrino P, Russo M, Ronchi A et al (2016) Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine 53:471–479

    Article  CAS  PubMed  Google Scholar 

  33. Scmidt D, Ricci C, Behrens G, Leitzmann MF (2015) Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Obes Rev 16:1042–1054

    Article  Google Scholar 

  34. Choi JS, Kim EK, Moon HJ et al (2015) Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine 48:264–271

    Article  CAS  PubMed  Google Scholar 

  35. Han MA, Kim JH, Song HS (2019) Persistent organic pollutants, pesticides, and the risk of thyroid cancer: systematic review and meta-analysis. Eur J Cancer Prev 28:344–349

    Article  PubMed  Google Scholar 

  36. Colao A, Muscogiuri G, Piscitelli P (2016) Environment and health: not only cancer. Int J Environ Res Public Health 13:724

    Article  PubMed Central  Google Scholar 

  37. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248

    Article  CAS  PubMed  Google Scholar 

  38. Marotta V, Maladrino P, Russo M et al (2020) Fathoming the link between antropogenic chemical contamination and thyroid cancer. Crit Rev Oncol Hematol 150:102950

    Article  PubMed  Google Scholar 

  39. Ferrari S-M, Fallahi P, Antonelli A, Benvenvenga S (2017) Environmental issues in thyroid diseases. Front Endocrinol (Lausanne) 8:50

    Article  Google Scholar 

  40. Valizadeh S, Lee SS, Baek K et al (2021) Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: a review. Environ Res 200:111757

    Article  CAS  PubMed  Google Scholar 

  41. Lero CC, Jones RR, Lang H et al (2018) A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus serum bank cohort. Environ Res 165:125–132

    Article  Google Scholar 

  42. Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS (2010) Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 118:686–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lope V, Perez-Gomez B, Aragones N et al (2009) (2009) Occupational exposure to chemicals and risk of thyroid cancer in Sweden. Int Arch Occup Environ Health 82:267–274

    Article  CAS  PubMed  Google Scholar 

  44. Huang H, Sjodin A, Chen Y et al (2020) Polybrominated diphenyl ethers, polybrominated biphenyls, and risk of papillary thyroid cancer: a nested case-control study. Am J Epidemiol 189:120–132

    Article  PubMed  Google Scholar 

  45. Nettore IC, Colao A, Macchia PE (2018) Nutritional and environmental factors in thyroid carcinogenesis. Int J Environ Res Public Health 15:1735

    Article  PubMed Central  Google Scholar 

  46. NHANES 2001–2002 U.S. Department of Agriculture, Agricultural Research Service (2005) What We Eat In America: usual nutrient intakes from food compared to dietary reference intakes. http://www.ars.usda.gov/ba/bhnrc/fsrg

  47. Yilmaz B, Terekeci H, Sandal S, Kelestimur F (2020) Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 21:127–147

    Article  CAS  PubMed  Google Scholar 

  48. Ward MH, Jones RR, Brender JD et al (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15:1557

    Article  PubMed Central  Google Scholar 

  49. Sebranck JG, Bacus JN (2007) Cured meat products without direct addition of nitrate or nitrite: what are the issues ? Meat Sci 77:136–147

    Article  Google Scholar 

  50. Atakisi E and Merhan O (2017) Nitric Oxide Synthase and Nitric Oxide Involvement in Different Toxicities. Chapter from the book Nitric oxide synthase -Simple enzyme complex roles. http://www.intenchopen.com/books/ Nitric oxide synthase -Simple enzyme complex roles

  51. WHO (2011) Guidelines for drinking water quality, 4th edn. WHO Publications, Geneva

    Google Scholar 

  52. Drozd VM, Branovan I, Shiglik N et al (2018) Thyroid cancer induction: nitrates as independent risk factors or risk modulators after radiation exposure, with a focus on the Chernobyl accident. Eur Thyroid J 7:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kilfoy BA, Zhang Y, Park Y et al (2011) Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP diet and health study. Int J Cancer 129:160–172

    Article  CAS  PubMed  Google Scholar 

  54. Sadik NAH, EL-Maraghy, Ismail MF, (2008) Diethylnitrosamine-induced hepatocarcinogenesis in rats: possible chemoprevention by blueberries. Afr J Biochem Res 2:81–87

    Google Scholar 

  55. Merhan O, Ozcan A, Atakisi E et al (2016) The Effect of β-carotene on acute phase response in diethylnitrosamine given rabbits. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 22:533–537

    Google Scholar 

  56. Markaki I, Linos D, Linos A (2003) The influence of dietary patterns on the development of thyroid cancer. Eur J Cancer 39:1912–1919

    Article  CAS  PubMed  Google Scholar 

  57. Liang J, Zhao N, Zhu C et al (2020) Dietary patterns and thyroid cancer risk: a population -based case -control study. Am J Transl Res 12:180–190

    PubMed  PubMed Central  Google Scholar 

  58. Zhang C, Wu H-B, Cheng M-X et al (2019) Association of exposure to multiple metals with papillary thyroid cancer risk in china. Environ Sci Pollut Res Inst 26:20560–20572

    Article  CAS  Google Scholar 

  59. Bibi K, Shah MH (2021) Study of essential and toxic metal imbalances in the scalp hair of thyroid cancer patients in comparison with healthy donors. Biol Trace Elem Res 199:500–512

    Article  CAS  PubMed  Google Scholar 

  60. Buha A, Matovic V, Antonijevic B et al (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19:1501

    Article  PubMed Central  Google Scholar 

  61. Zhang Q, Jiang C, Li H et al (2020) Effect of the interaction between cadmium exposure and CLOCK gene polymorphisms on thyroid cancer: a case-control study in China. Biol Trace Elem Res 196:86–95

    Article  CAS  PubMed  Google Scholar 

  62. Chung HK, Nam JS, Ahn CW, Lee YS, Kim KR (2016) Some elements in thyroid tissue are associated with more advanced stage of thyroid cancer in Korean women. Biol Trace Elem Res 171:54–62

    Article  CAS  PubMed  Google Scholar 

  63. Rezaei M, Javadmoosavi S-Y, Mansouri B et al (2019) Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res Int 26:35787–35796

    Article  CAS  PubMed  Google Scholar 

  64. Olmedo P, Pla A, Hernandez AF et al (2013) Determination of toxic elements (mercury, cadmium, lead, tin, and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int 59:63–72

    Article  CAS  PubMed  Google Scholar 

  65. Leux C, Truong T, Petit C et al (2012) Family history of malignant and benign thyroid diseases and risk of thyroid cancer: a population-based case-control study in New Caledonia. Cancer causes Control 23:745–755

    Article  PubMed  Google Scholar 

  66. Burger J, Diaz-Bariga F, Marafante E et al (2003) Methodologies to examine the importance of host factors in bioavailability of metals. Ecotoxicol Environ Saf 56:20–31

    Article  CAS  PubMed  Google Scholar 

  67. Badmaev V, Prakash S, Majeed M (1999) Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 5:273–291

    Article  CAS  PubMed  Google Scholar 

  68. Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37:265–278

    Article  CAS  PubMed  Google Scholar 

  69. Mukherjee B, Patra B, Mahapatra S et al (2004) Vanadium—an element of atypical biological significance. Toxicol Lett 150:135–145

    Article  CAS  PubMed  Google Scholar 

  70. Malandrino P, Russo M, Ronchi A et al (2020) Increased thyroid cancer incidence in volcanic areas: a role of increased heavy metals in the environment? Int J Mol Sci 21:3425

    Article  PubMed Central  Google Scholar 

  71. Fallahi P, Foddis R, Elia G et al (2018) Vanadium pentoxide induces the secretion of CXCL9 and CX.CL10 chemokines in thyroid cells. Oncol Rep 39:2422–2462

    CAS  PubMed  Google Scholar 

  72. Deng Y, Wang M, Tian T et al (2019) The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front Oncol 9:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA (2013) Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. J Toxicol Environ Health B Crit Rev 16:127–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takir M, Turkoglu O, Turkoglu Z (2017) Thyroid hormone and ultrasonographical analyses in patients with nickel Allergy. EJMO 1:145–148

    Google Scholar 

  75. Mamyrbayev A, Djarkenow T, Dosbayev A et al (2016) The incidence of malignant tumors in environmentally disadvantaged regions of Kazakhstan. Asian Pac J Cancer Prev 17:5203–5209

    PubMed  PubMed Central  Google Scholar 

  76. Baltaci A-K, Dundar T-K, Aksoy F et al (2017) Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol Trace Elem Res 175:57–64

    Article  CAS  PubMed  Google Scholar 

  77. Qu X, Yang H, Zhifeng Yu et al (2020) Serum zink levels and multiple health outcomes: implications for zink-based biomaterials. Bioact Mater 5:410–422

    Article  PubMed  PubMed Central  Google Scholar 

  78. Saris NEL, Mervaala E, Karppanen H et al (2000) Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 294:1–26

    Article  CAS  PubMed  Google Scholar 

  79. Anastassopoulou J, Theophanides T (2002) Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals. Crit Rev Oncol Hematol 42:79–91

    Article  CAS  PubMed  Google Scholar 

  80. Castiglioni S, Maier JAM (2011) Magnesium and cancer: a dangerous liaison. Magnes Res 24:S92–S100

    Article  CAS  PubMed  Google Scholar 

  81. Blaszczyk U, Duda-Chodak A (2013) Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig 64:165–171

    CAS  PubMed  Google Scholar 

  82. Shen F, Cai WS, Li JL, Feng Z, Cao J, Xu B (2015) The Association between serum levels of selenium, copper, and magnesium with thyroid cancer: a meta-analysis. Biol Trace Elem Res 167:225–235

    Article  CAS  PubMed  Google Scholar 

  83. Blunden S, Wallace T (2003) Tin in canned food: a review and understanding of occurrence and effect. Food Chem Toxicol 41:1651–1652

    Article  CAS  PubMed  Google Scholar 

  84. Mol S (2011) Levels of heavy metals in canned bonito, sardines, and mackerel produced in Turkey. Biol Trace Elem 143:974–982

    Article  CAS  Google Scholar 

  85. Carcasso I, Benejam I, Benito J et al (2011) Methylmercury levels and bioaccumulation in the aquatic web of a highly mercury-contaminated reservoir. Environ Int 37:1213–1218

    Article  Google Scholar 

  86. IARC monographs on the evaluation of carcinogenic risks to human of beryllium, cadmium, mercury, and exposure in the glass manufacturing industry.58 IARC Lyon, France. http://monographs.iarc.fr/ENG/monographs/58/

  87. Kinjo Y, Akiba S, Yamaguchi N et al (1996) Cancer mortality in Minamata disease patients exposed to methylmercury through fish diet. J Epidemiol 6:134–138

    Article  CAS  PubMed  Google Scholar 

  88. Zidane M, Ren Y, Xhaard C et al (2019) Non-essential trace elements dietary exposure in French Polynesia: intake assessment, nail bio monitoring and thyroid cancer risk. Asian Pac J Cancer Prev 20:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Orihuela D (2011) Aluminum effects on thyroid gland function: iodide uptake, hormone biosynthesis and secretion. J Inorg Biochem 105:1464–1468

    Article  CAS  PubMed  Google Scholar 

  90. Wang W, Liu J, Feng W et al (2019) Targeting mitochondria with Au-Ag. Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomater Sci 7:1052–1063

    Article  CAS  PubMed  Google Scholar 

  91. Ye ZV, Tsyb AF, Vtyurin BM (1995) Trace elements and thyroid cancer. Analyst 120:817–821

    Article  Google Scholar 

  92. Knobel M, Medeiros-Neto G (2007) Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol 51:701–712

    Article  PubMed  Google Scholar 

  93. Liu Y, Su L, Xiao H (2017) Review of factors related to the Thyroid Cancer Epidemic. Int J Endocrinol 2017:5308635

    Article  PubMed  PubMed Central  Google Scholar 

  94. Williams ED, Doniach I, Bjarnason O, Michie W (1977) Thyroid cancer in an iodide rich area: a histopathological study. Cancer 39:215–222

    Article  CAS  PubMed  Google Scholar 

  95. Feldt-Rasmussen U (2001) Iodine and cancer. Thyroid 11:483–486

    Article  CAS  PubMed  Google Scholar 

  96. Fuziwara CS, Kimura ET (2014) High iodine blocks a Notch/miR-19 loop activated by the BRAF (V600E) oncoprotein and restores the response to TGFβ in thyroid follicular cells. Thyroid 24:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kohrle J (2015) Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 22:392–401

    Article  PubMed  Google Scholar 

  98. Filippini T, Michalke B, Wise LA et al (2018) Diet composition and serum levels of selenium species: a cross-sectional study. Food Chem Toxicol 115:482–490

    Article  CAS  PubMed  Google Scholar 

  99. Popova EV, Tinkov AA, Ajsuvakova OP, Skalnaya MG, Skalny AV (2017) Boron—a potential goiterogen? Med Hypotheses 104:63–67

    Article  CAS  PubMed  Google Scholar 

  100. Turner MC, Krewski D, Diver WR et al (2017) Ambient air pollution and cancer mortality in the cancer prevention study II. Environ Health Perspect 125:087013

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cong X (2018) Air pollution from industrial waste gas emission sis associated with cancer incidences in Shanghai, China. Environ Sci Pollut Res 25:13067–13078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Legakis.

Ethics declarations

Conflict of interest

I. Legakis, A. Barbouni and G. Chrousos declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legakis, I., Barbouni, A. & Chrousos, G. The importance of toxic environmental substances in the development of thyroid cancer. Toxicol. Environ. Health Sci. 14, 101–109 (2022). https://doi.org/10.1007/s13530-022-00127-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00127-8

Keywords

Navigation