Skip to main content
Log in

Thorium-induced Anatomical and Histopathological Changes in Liver of Swiss Mice

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Present study is aimed to investigate the anatomical and histopathological changes in liver tissues of Swiss albino male mice, one month after intravenous administration of thorium (232Th; 4 and 40 mg/kg).

Methods

Synchrotron X-ray micro-CT imaging, CD31 immuno-cytochemistry, hematoxylin & eosin staining and Periodic acid-Schiff staining were performed to study changes in liver anatomy, blood vessels/capillaries, histology and glycogen content of liver, respectively.

Results

Synchrotron X-ray micro-CT imaging of liver showed loss of blood vessels in mice treated with thorium (4 mg/kg), which was more prominent at higher dose of thorium (40 mg/kg). These thorium-induced changes in liver were correlated with the decrease in CD31 positive cells and loss of tissue architecture. A dose-dependent increase in glycogen content was also observed in the liver of thorium-treated mice.

Conclusion

Our results provide novel insight about the effects of thorium on liver, which may have significant implications in understanding the mechanism of thorium thorium-induced hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raina, V. K. et al. Critical facility for lattice physics experiment for the advanced heavy water reactor and the 500 MWe pressurized heavy water reactor. Nucl. Eng. Des. 236, 758–769 (2006).

    Article  CAS  Google Scholar 

  2. Kumar, C. et al. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int. J. Radiat. Biol. 92, 173–186 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Yadav, R. et al. Mechanism of carcinogenesis after exposure of actinide radionuclides: Emerging concepts and missing links. J. Radiat. Can. Res. 8, 20–34 (2017).

    Article  Google Scholar 

  4. Campos, M. P. & Pecequilo, B. R. S. Thoron exposure for workers with naturally occurring radioactive materials. Int. J. Low. Radiat. 4, 53–60 (2007).

    Article  Google Scholar 

  5. Dang, H. S. et al. Studies on intake and body fluid concentration of thorium for subjects working and living in thorium rich environments. J. Radioanal. Nucl. Chem. 243, 513–516 (2000).

    Article  CAS  Google Scholar 

  6. Juliao, L. M. et al. Determination of 238U, 234U, 232Th, 228Th, 228Ra, 226Ra and 210Pb concentration in excreta samples of inhabitants of a high natural background area. Radiat. Prot. Dosimetry 105, 379–382 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Modna, D. K. et al. Thorium in the workplace measurement intercomparison. Appl. Radiat. Isot. 53, 265–271 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Ulsh, B. A. et al. Establishing bounding internal dose estimates for thorium activities at Rocky Flats. Health Phys. 95, 81–88 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Zapadinskaia, E. E., Gasteva, G. N. & Titiova, I. N. Analysis of health state in individuals exposed to thorium and chemical hazards in occupational environment. Med. Tr. Prom. Ekol. 11, 14–19 (2005).

    Google Scholar 

  10. Ishikawa, Y. et al. Revised organ partition of thorium- 232 in thorotrast patients. Radiat. Res. 152, S102–S106 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. Kumar, A. et al. Thorium-induced oxidative stress mediated toxicity in mice and its abrogation by diethylenetriamine pentaacetate. Int. J. Radiat. Biol. 84, 337–349 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Kumar, A. et al. Thorium-induced neurobehavioural and neurochemical alterations in Swiss mice. Int. J. Radiat. Biol. 85, 338–347 (2009).

    Article  PubMed  CAS  Google Scholar 

  13. Ansoborlo, E. et al. Review of actinide decorporation with chelating agents. C. R. Chimie 10, 1010–1019 (2007).

    Article  CAS  Google Scholar 

  14. Bilderback, D. H., Elleaume, P. & Weckert, E. Review of third and next generation synchrotron light sources. J. Phys. B At. Mol. Opt. Phys. 38, 773–797 (2005).

    Article  CAS  Google Scholar 

  15. Papadimitropoulos, A. et al. Comparative study of desktop- and synchrotron radiation-based micro computed tomography analyzing cell-seeded scaffolds in tissue engineering of bone. in Procee SPIE - The International Society for Optical Engineering. 7080, 10.1117/12.797427 (2008).

  16. Bravin, A., Coan, P. & Suortti, P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys. Med. Biol. 58, doi: 10.1088/0031-9155/58/1/ R1 (2013).

  17. Agrawal, A. K. et al. Design, development and first experiments on the X-ray imaging beamline at Indus-2 synchrotron source RRCAT, India. J. Synchrotron Radiat. 22, 1531–1539 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Snigirev, A. et al. On the possibilities of X-ray phase contrast imaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66, 5486–5492 (1995).

    Article  CAS  Google Scholar 

  19. Agrawal, A. K. et al. Synchrotron-based X-ray microimaging facility for biomedical research. J. Radiat. Can. Res. 8, 153–159 (2017).

    Article  Google Scholar 

  20. Schneider, C. A., Rasband, W. S. & Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baratta, J. L. et al. Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem. Cell Biol. 131, 713–726 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. ATSDR. Toxicological Profile for Thorium, https://www.atsdr.cdc.gov/toxprofiles/tp147.pdf (1990).

  23. DACTARI. A database for chemical toxicity and radiotoxicity assesement of radionuclides. CEA, France. http://www.dactari.toxcea.org. (2018).

  24. Desai, S. et al. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model. PLoS ONE. doi.org/10.1371/journal.pone.0161662 (2016).

    Google Scholar 

  25. Kumar, A. et al. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie 92, 869–879 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. Simko, V. Alkaline Phosphatases in Biology and Medicine. Digest. Dis. 9, 189–209 (1991).

    Article  CAS  Google Scholar 

  27. Samuel, V. T. & Shulman, G. I. Mechanisms for insu lin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Evans, R. W., Littler, T. R. & Pemberton, H. S. Glycogen Storage in the Liver in Diabetes Mellitus. J. Clin. Pathol. 8, 110–113 (1955).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang, D. et al. Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech. Histochem. 83, 179–189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instrum. Methods Phys. Res. A 563, 215–224 (2006).

    Article  CAS  Google Scholar 

  31. Sun, Z. The Promise of Synchrotron Radiation in Medical Science. Australas Med. J. 1, 1–5 (2009).

    Article  Google Scholar 

  32. Kak, A. C. & Slaney, M. in Principles of Computerized Tomographic Imaging (Society of Industrial and Applied Mathematics, USA, 2001).

    Book  Google Scholar 

  33. Limaye, A. & Drishti. A volume exploration and presentation tool, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8506/85060X/Drishti-a-volume-exploration-and-presentation-tool/10.1117/12.935640.short?SSO=1 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badri N. Pandey.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Agrawal, A.K., Ali, M. et al. Thorium-induced Anatomical and Histopathological Changes in Liver of Swiss Mice. Toxicol. Environ. Health Sci. 10, 97–106 (2018). https://doi.org/10.1007/s13530-018-0352-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0352-6

Keywords

Navigation