Skip to main content
Log in

Preparation of Organosilane Coatings via Chemically Pre-conjugated Graphene Oxides for Enhanced Dispersion and Hardness

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Use of transparent organosilane hybrid films to protect substrates such as glasses and plastics is of great importance for electronic applications. In this study, graphene oxides (GOs) were chemically conjugated with organosilane oligomers to improve the dispersibility and hardness of organosilane coatings.

Methods

The GO-conjugation with organosilane oligomers (GO-oSi) was prepared through a two-step route featuring amine-carboxyl coupling reaction and oligomerization with silica precursors. The structural properties of GO-oSi were characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.

Results

The stability of the GO-organosilane coating dispersion was confirmed after storage in ethanol for 10 days via Tyndall effect analysis. After photopolymerization with organosilane coating agent, the transparencies of the GO-organosilane films were 94% or more, the enhanced hardness was characterized from 3H to 5H through pencil hardness testing.

Conclusion

The simple strategy of pre-conjugation of GOs with organosilane oligomers has the potential to enhance dispersion and hardness of a wide variety of coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neto, A. C. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  2. Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Rafiee, M. A. et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Moon, I. K., Choi, J. & Kim, N. Photovoltaic Performance of Flexible Graphene-Electrodes Prepared by a Simple Chemical Vapor Graphitization. Mol. Cryst. Liq. Cryst. 581, 7–12 (2013).

    Article  CAS  Google Scholar 

  5. Kuila, T. et al. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test. 31, 31–38 (2012).

    Article  CAS  Google Scholar 

  6. Fang, M. et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098–7105 (2009).

    Article  CAS  Google Scholar 

  7. Tang, L.-C. et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013).

    Article  CAS  Google Scholar 

  8. Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, D., Feng, H. & Li, J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, X., Zhang, Q., Chen, D. & Lu, P. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010).

    Article  CAS  Google Scholar 

  13. Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Bao, H. et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7, 1569–1578 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Livage, J., Henry, M. & Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Ch. 18, 259–341 (1988).

    Article  CAS  Google Scholar 

  16. Hench, L. L. & West, J. K. The sol-gel process. Chem. Rev. 90, 33–72 (1990).

    Article  CAS  Google Scholar 

  17. Kim, S.-S., Choi, S.-Y., Park, C.-G. & Jin, H.-W. Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films 347, 155–160 (1999).

    Article  CAS  Google Scholar 

  18. Figueira, R., Silva, C. J. & Pereira, E. Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress. J. Coat. Technol. Res. 12, 1–35 (2015).

    Article  CAS  Google Scholar 

  19. Tana, F. et al. Synthesis and characterization of scratchresistant hybrid coatings based on non-hydrolytic solgel ZrO2 nanoparticles. Prog. Org. Coat. 103, 60–68 (2017).

    Article  CAS  Google Scholar 

  20. Luong, B. T., Oh, J.-W., Choi, J. & Kim, N. A Simple Method for Fabricating a Mach-Zehnder Type Waveguide Using Sol-Gel Derived Photopatternable Hybrid Materials for Optical Biosensors. J. Nanosci. Nanotechnol. 11, 4546–4550 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Jin, J. et al. Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Org. Electron. 13, 53–57 (2012).

    Article  CAS  Google Scholar 

  22. Yang, B.-X., Tseng, C.-Y., Chiang, A.S.-T. & Liu, C.-L. A sol-gel titanium-silicon oxide/organic hybrid dielectric for low-voltage organic thin film transistors. J. Mater. Chem. C 3, 968–972 (2015).

    Article  CAS  Google Scholar 

  23. Ramezanzadeh, B., Ahmadi, A. & Mahdavian, M. Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros. Sci. 109, 182–205 (2016).

    Article  CAS  Google Scholar 

  24. Zheng, C., Zheng, Y., Chen, W. & Wei, L. Encapsulation of graphene oxide/metal hybrids in nanostructured sol-gel silica ORMOSIL matrices and its applications in optical limiting. Opt. Laser Technol. 68, 52–59 (2015).

    Article  CAS  Google Scholar 

  25. Lambert, J. B. in Organic Structural Spectroscopy (Pearson Prentice Hall, USA, 2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung-Hwan Park or Jongwan Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seon, DM., Park, Y., Yu, GT. et al. Preparation of Organosilane Coatings via Chemically Pre-conjugated Graphene Oxides for Enhanced Dispersion and Hardness. Toxicol. Environ. Health Sci. 10, 72–78 (2018). https://doi.org/10.1007/s13530-018-0349-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0349-1

Keywords

Navigation